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Chapter 1

Introduction

1.1 Aim
The project is focused on understanding binary quadratic forms and the
various questions that naturally get asked regarding them.

1.2 Motivation
As a first year undergraduate with an interest in number theory, I went
ahead to explore quadratic reciprocity and binary quadratic forms. Prof.
Sury suggested that I should try to understand Zagier’s proof as it is a
very beautiful proof and can be understood with my knowledge of binary
quadratic forms.

1.3 Overview
I learnt and present the following:

1. Quadratic forms and Linear algebra in reduction theory: Definition
of a binary quadratic form, discriminant, representation by a form
which also includes different types of representation. Next we focus
on the different types of forms based on what numbers (positive or
negative) they can represent and put on some conditions on the dis-
criminant to decide when it represents which kind of numbers. We
then introduce the very essential modular group and how its actions
affect the coefficients. We also provide a matrix representation of a
form and definition of a class number.
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2. Langrange reduction: Reduced in the sense of Langrange, bounds on
the coefficients, reduction of positive definite forms and Legendre’s
Lemma.

3. Representations by quadratic forms: What is a principal form, what
is and when is a discriminant fundamental. Link between represen-
tation of a prime by a form and "quadratic residue-ness" of the dis-
criminant with respect to the prime.

4. Zagier’s reduction: Reduced in the sense of Zagier, followedbybounds
on the coefficients. And search for a structure to define equivalence
among forms, which leads to the reduction operator and the cycle
generated by it. Definition of a semi-reduced form and the ultimate
fundamental lemma that establishes what it means for two forms to
be equivalent.

5. Gauss reduction: Very similar to Zagier’s reduction. Both deal with
reduction of indefinite forms. First as usual we define what it means
to be reduced in terms of Gauss and then try to find some analogue
to Zagier’s theory.

6. Interpreting Zagier’s proof of two squares theorem using binary
quadratic form: First we focus on the proof given by Zagier, that is
what the involution is, whether it works as it should and lay out the
details which he chose to omit in the proof. A similar analysis of
Heath-Brown’s proof is also provided. Further, we interpret it using
quadratic forms. First we redefine the involution in terms of coeffi-
cients of the forms and then introduce a function that does the re-
quired mapping as in the case of Zagier’s proof.

7. Gauss’s class number problem: We prove a few simple results and
build up a few theorems on that. In the process we come across Eu-
ler’s prime generating polynomial which has some interesting links
to the initial results that we prove.
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Chapter 2

Detailed Topics

2.1 Quadratic forms and linear algebra in reduc-
tion theory

2.1.1 Quadratic forms
Here, we will discuss what a binary quadratic form is and what represen-
tation of a number by binary quadratic form means.
Forms are polynomialsQ(x1, x2, . . . xs) with degree n. It is a sum of mono-
mials xr11 x

r2
2 x

r3
3 . . . xrss with r1 + r2 + r3 . . . rs = n. And a quadratic form

is an expression of the form
∑
i,j

cijxixj where 0 ≤ i, j ≤ s and cij is from

some domain.
Hence, binary quadratic forms are quadratic forms in two variables x, y. It
can be expressed as

F (x, y) = Ax2 +Bxy + Cy2

F (x, y) is also written as (A,B,C). We focus our study to very specific bi-
nary quadratic forms, the ones with A,B,C ∈ Z.
We define ∆ = B2− 4AC as the discriminant of the form (A,B,C). A num-
ber n is said to be represented by the form F if and only if F (x, y) = n for
some integers x, y, and n is said to be represented primitively by F if there
exists coprime integers r, s such that F (r, s) = n.
A form F (x, y) = (A,B,C) is said to be primitive if gcd(A,B,C) = 1. In the
course of my report we will primarily focus on primitive binary quadratic
forms and primitive representation of integers by such forms.
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Given a form F we have certain teminologies:

• A form is said to be indefinite if it takes both positive and negative
values

• A form is said to be positive semidefinite (negative semidefinite) if the
form F (x, y) ≥ 0(F (x, y) ≤ 0) for all integers x, y

• A semidefinite form is said to be definite if in addition the only integers
x, y for which F (x, y) = 0 are x = 0, y = 0

This leads us to the

Theorem 1. Let F (x, y) = Ax2 +Bxy + Cy2 then

• If the discriminant ∆ is greater than 0, then F is indefinite

• If the discriminant ∆ is equal to 0, then F is semidefinite

• If the discriminant ∆ < 0 and A < 0 then F is negative definite and if
∆ < 0 and A > 0 then F is positive definite

2.1.2 Linear algebra in reduction theory
Modular group action. There is a special linear group also known asmod-
ular group, a matrix group which has determinant 1 and whose elements
are all integers.

SL2Z = {
(
r s
t u

)
| r, s, t, u ∈ Z and ru− ts = 1}

FormsF andG are said to be equivalent to one another ifF (x, y) = G((x, y)T T ) =
G(rx+ sy, tx+ uy) where T ∈ SL2Z and T T is transpose of T . If F (x, y) =
(A,B,C) and G(x, y) = (A′, B′, C ′) then from calculations we can see that

A′ = Ar2 +Brt+ Ct2 (2.1)
B′ = A(2rs) +B(ru+ st) + C(2tu) (2.2)
C ′ = As2 +Bsu+ Cu2 (2.3)

Coefficient matrix. Every form F (x, y) = (A,B,C) can be assigned matri-
ces
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m(F ) =

(
2A B
B 2C

)
andM(F ) =

(
A B/2
B/2 C

)
4F = (x y)m(F )

(
x
y

)
and F = (x y)M(F )

(
x
y

)
Now, we observe the action of modular group on the coefficient matrix. If

F and G are equivalent matrices then

G = T TM(F )T

where T ∈ SL2Z and T T is transpose of T .
It can be shown that equivalent forms represent exactly the same numbers
primitively. Equivalent forms have the same discriminant, if a primitive
form F is equivalent to G then G is also primitive. This leads us to the
classification of forms into equivalence classes. Building up on this we de-
fine class number as the number of equivalence classes of primitive forms
with discriminant ∆ and we use h(∆) to denote it.

Next, we will focus on reducing forms from one to another. Our target is
to transform forms with large coefficients into forms with smaller
coefficients which is the objective of Langrange reduction, or try to find a
structure to somehow classify the forms into categories as in Zagier’s
reduction.

2.2 Langrange reduction
We want to know if the class number for a given determinant is finite or
not also if a particular equivalence class has a "simplest" form. As we
proceed further we will see that this is indeed the case for negative
determinants. It is seen that the minimal possible number represented by
the forms in a class is related to the minimal possible value of A for all
forms (A,B,C) in that class.

Bounds on coefficients. The paper is able to find some bounds on the
coefficients of the binary quadratic forms as stated below.

• There is a form (A,B,C) in each equivalence class with
|B| ≤ |A| ≤ |C|, and such a form is known as Langrange-reduced
form. So, we are able to say that every form can be reduced to a
Langrange-reduced form.
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• A Langrange-reduced form with ∆ > 0 has |A| ≤
√

∆
2
, |B| ≤

√
∆
5
and

|C| ≤ ∆
4

• A Langrange-reduced form with ∆ < 0 has |A| ≤
√
−∆

3
, |B| ≤

√
−∆

3

and |C| ≤ 1−∆
4

These bounds suggest that there are only finitely many Langrange-reduced
forms which in turn means finite number of equivalence classes.
The bound is improved in case of indefinite primitive forms (A,B,C)
with AC < 0 and 0 ≤ B ≤ |A| ≤ |C|. In such cases (A,B,C) ∼ (1, 1,−1)

or |A| ≤
√

∆
8
.

Reduction of positive definite forms. The reduction of positive definite
forms is simpler as compared to others and hence we will try to
understand it first. So, we are dealing with forms F = (A,B,C) with
A > 0 and ∆ = B2 − 4AC < 0, additionally we wil only focus on forms
with gcd(A,B,C) = 1 or primitive forms.
We know that there are finite number of equivalence classes and now we
ask the question whether there exists unique reduced form for each
equivalence class. The answer turns out to be ’yes’. The existence proof of
this uses our previously proven fact that each equivalence class contains a
Langrange-reduced form, and the uniqueness theorem is proven using
Legendre’s Lemma.

Lemma 1. (Legendre’s Lemma): If a form F = (A,B,C) is reduced then the
three smallest integers primitively represented by F are A,C,A− |B|+C. More
precisely, A = F (±1, 0), C = F (0,±1) and A− |B|+ C = F (±1,∓1), also

F (x, y) ≥ A for (x, y) 6= (0, 0), (±1, 0)

F (x, y) ≥ C for (x, y) 6= (0, 0), (0,±1), (±1, 0)

F (x, y) ≥ A− |B|+ C for (x, y) 6= (0, 0), (±1, 0), (0,±1), (±1,∓1)

2.3 Representations by Quadratic forms
. We know from section 2.1.1 what it means for a number to be
represented by a form. Here, we focus on certain classical results
regarding representation of primes by certain binary quadratic forms.
First we define what a principal form is.
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∆ = B2 − 4AC ≡ 0, 1 (mod 4) hence ∆ = −4m or ∆ = 1− 4m for some
m ∈ Z. Therefore, a principal form F0 is defined as

F0 =

{
(1, 0,m) for ∆ = −4m

(1, 1,m) for ∆ = 1− 4m

We have the following lemma:

Lemma 2. For a discriminant ∆, the following statements are equivalent:

1. p|F0(a, b) for a pair of coprime integers a, b

2.
(

∆

p

)
6= −1

3. There is a quadratic form F = (p,B,C) with discriminant ∆

4. There is a quadratic form F with discriminant ∆ that primitively
represents p

Definition: A discriminant ∆ is said to be fundamental if every form with
discriminant ∆ is primitive.
It can be proven that a discriminant ∆ is fundamental if and only if ∆ is
square-free.

Lemma 3. A discriminant ∆ is fundamental if and only if

∆ =

{
4m m ≡ 2, 3 (mod 4)

m m ≡ 1 (mod 4)

withm squarefree.

Following up we have the powerful proposition.

Proposition 1. If
(

∆

p

)
6= −1 for some prime p, then p is represented by a

Langrange-reduced form with discriminant ∆.

As a direct consequence to this proposition we have the following: Ifm
divides a sum of two coprime squares, thenm itself can be written as a
sum of two squares.
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2.4 Zagier’s reduction
We now focus our concern to the reduction of indefinite binary quadratic
forms. In case of definite forms we have we had Langrange’s theory that
allowed us to have a unique reduced form for each equivalence class. The
objective here is also the same, to define what reduced means in case of
indefinite forms so that we can obtain in the best case one unique reduced
form per equivalence class or atleast small number of reduced forms per
equivalence class. To this effect there have been many attempts and it has
been seen that it serves us better to have more reduced forms as it
provides us with a better mathematical structure which is more valued
than cardinality.
We have Gauss’s theory, Langrange’s theory and Zagier’s theory.
Gauss’s classical theory is the more suitable one for calculation as it’s
coefficients are smaller but Zagier’s thoery has proven more elegant and
in this part we are going to discuss that, the following section will take us
to the classical theory of Gauss.
Consider the form F = (A,B,C), now if it were to be reduced according
to Langrange’s theory then in a particular equivalence class we would
pick the minimal |A| and reduce B modulo 2A to find a minimal B. We
do something very similar here. We choose the minimal A > 0 and B is
reduced modulo 2Awhich means B ∈ [

√
∆,
√

∆ + 2A], if this is so then
4AC = B2 −∆ > 0⇒ AC > 0⇒ C > 0. By the minimality of Awe have
that C ≤ A and since the dlip operation can be performed on the
coefficients therefore B ∈ [

√
∆,
√

∆ + 2C].
Summing all this up we can say that a form F = (A,B,C) with positive
nonsquare discriminant can be called Zagier reduced(Z-reduced) if the
following conditions are met.

• B ∈ [
√

∆,
√

∆ + 2A]

• B ∈ [
√

∆,
√

∆ + 2C]

Bounds on coefficients. The number of Z-reduced forms with
discriminant ∆ is called the calibre of the discriminant and is denoted by
κZ . From calculations we find that κZ increases at a very rapid rate,

almost ∆

4
or even more.

The author presents further conditions on the coefficients of the Z-reduced
forms which is captured in the below theorem

Theorem 2. Let F = (A,B,C) be a primitive indefinite binary quadratic form
with discriminant ∆ = B2 − 4AC and let ε1 = B−

√
∆

2A
and ε2 = B+

√
∆

2A
be the
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roots of the equation F (x,−1) = Ax2 −Bx+ C = 0. Then the following
statements are equivalent

(A,B,C) is Z-reduced

(C,B,A) is Z-reduced

0 < B −
√

∆ < 2A < B +
√

∆

0 < B −
√

∆ < 2C < B +
√

∆

0 < ε1 < 1 < ε2

A > 0, C > 0, B > A+ C

These results help us to put bounds on the coefficients of the Z-reduced
forms in the form of the following proposition.

Proposition 2. There are only finitely many Z-reduced forms with a
discriminant ∆. The coefficients of the Z-reduced forms have the following
conditions: 0 < A < C ≤ ∆

4
and
√

∆ < B ≤ ∆+1
2

Proof. Since it is a Z-reduced form, from the previous theorem we have
A > 0, C > 0 and B > A+ C ⇒ B − A− C ≥ 1

A =
4A(B − A− C)

4(B − A− C)
=
−B2 + 4AB − 4A2 +B2 − 4AC

4(B − A− C)
=

∆− (B − 2A)2

4(B − A− C)
≤ ∆

4

Similarly

C =
4C(B − A− C)

4(B − A− C)
=
−B2 + 4CB − 4C2 +B2 − 4AC

4(B − A− C)
=

∆− (B − 2C)2

4(B − A− C)
≤ ∆

4

Now, B2 = 4AC + ∆ and AC > 0⇒ B2 > ∆⇒ B >
√

∆

B2 = 4AC + ∆ ≤ ∆2

4
+ ∆ <

∆2

4
+ ∆ + 1 =

(
∆ + 2

2

)2

B <
∆ + 2

2
since B is an integer B ≤ ∆ + 1

2
and the proof is complete.

Now that we have established the finiteness of the calibre of the
determinant, we go to the question of equivalence in case of indefinite
forms. In the case of definite forms (particularly positive definite forms)
each equivalence class had a unique reduced form which is not the case
here. So, given a form we apply the reduction operator on it repeatedly
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and in the process we obtain cycles. We will prove that two forms are
equivalent if they belong to the same cycle.

Reduction map. Let us call F∆ the set of all primitive forms with
discriminant ∆ and a subsetR∆ the set of reduced primitive forms with
discriminant ∆ then a map ρ : F∆ → F∆ is called a reduction map if it has
the following properties:

• For a form F ∈ F∆ there exists an integer µ > 0 such that

ρµ(F ) = ρ ◦ ρ ◦ ρ ◦ . . . ρ(F )

is reduced or equivalently for any µ > 0 ρµ(F ) ∈ R∆

• If F ∈ R∆ then ρ(F ) ∈ R∆ that is ρmaps reduced forms to reduced
forms

In such a case, the form ρ(F ) is called the right neighbour of F and the
forms in the image of F are called semi-reduced.

Given a form F = (A,B,C), we can define the right neighbour
ρ(F ) = F ′ = (A′, B′, C ′) with F ′ as the product of action of a modular

group S on F . Here, S = Sn =

(
n 1
−1 0

)
=

(
1 −n
0 1

)(
0 1
−1 0

)
. So,

S ∈ SL2Z represents a shift followed by a flip. It is also to be noted that
n− 1 < B+

√
∆

2A
< n .

There is another way of defining a right-neighbour without explicitly
stating ′n′. It is as follows

Lemma 4. The right neighbour of the form F = (A,B,C) can be calculated as
follows:

1. C ′ = A

2. B +B′ ≡ 0 (mod 2A) and
{√

∆ < B′ <
√

∆ + 2A ,A > 0√
∆ + 2A < B′ <

√
∆ , A < 0

3. B′2 − 4A′C ′ = ∆

Now, we introduce a lemma to prove that ρ is a reduction map

Lemma 5. Let F = (A,B,C) be a form with positive discriminant ∆ and
ρ(F ) = F ′ = (A′, B′, C ′) be its right neighbour. Then the following are true:
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1. If A < 0 then A′ > A

2. If A > 0 then A′ > 0

3. If A′ ≥ A > 0, then F ′ is Z-reduced

4. If F is Z-reduced then ρ(F ) = STFS for some S =

(
n 1
−1 0

)
∈ SL2Z

with n ≥ 2

Using this lemma we can prove that ρ is a reduction map. Currently, the
map ρ is not injective so we define a new set of forms

Definition 1. A form is said to be semi-reduced if{√
∆ < B′ <

√
∆ + 2A ,A > 0√

∆ + 2A < B′ <
√

∆ , A < 0

But from lemma 2 we know that applying Zagier reduction on an
indefinite form makes it semi-reduced.

Proposition 3. The map ρ is injective is injective on semi-reduced forms

Proof. Suppose F1 = (A1, B1, C1) and F2 = (A2, B2, C2) map to the same
form G = (A,B,C). Determinant is invariant under reduction hence
F1, F2, G have the same discriminant say ∆
First, C = A1 = A2. And B1 +B = 2A1n1, B2 +B = 2A2n2, which means
that B2 −B1 = 2C(n2 − n1). Also, |B1 −

√
∆| < 2C and similarly

|B2 −
√

∆| < 2C. This implies that |B2 −B1| < 2C which means that
n1 = n2 ⇒ B1 = B2. Since, discriminant is same for both of them
therefore we can conclude that C1 = C2. We can finally conclude that
F1 = F2 or ρ is injective on semi-reduced forms.

Now, that we have proved that ρ is injective we can define a left
neighbour λ(F ) by inverting the reduction map. Suppose ρ(F ) = F ′ then
λ(F ′) can be defined in the following
manner(F = (A,B,C), F ′ = (A′, B′, C ′))

1. A = C ′

2. B +B′ ≡ 0 (mod 2C ′) and

{√
∆ < B <

√
∆ + 2C ′ , C ′ > 0√

∆ + 2C ′ < B <
√

∆ , C ′ < 0

3. B2 − 4AC = ∆

15



An alternate formulation of λ can also be defined in terms of matrices. ρ

was obtained by applying Sn =

(
n 1
−1 0

)
on F . λ can be obtained by

applying S−1
n =

(
0 −1
1 n

)
on ρ(F ).

Clearly, ρ and λ are inverse operations of each other on the set of reduced
forms. Hence, we have the following lemma.

Lemma 6. If F is semi-reduced then λ ◦ ρ(F ) = F , and ρ ◦ λ(F ) = F

Reduced forms are also semi-reduced hence ρ is injective on
semi-reduced forms. Also, if F is semi-reduced then so is ρ(F ), this
means that ρ is surjective. Hence, we have shown that ρ is a bijection the
set of reduced forms, and bijections implies permutation hence we can
safely conclude that ρ induces a permutation on the set of reduced forms.
λ is just the inverse of ρ, the same results apply to it as well. We know that
permutations are basically a union of disjoint cycles, hence we can say
that the reduced forms are clubbed into different cycles.
Now, that we have shown that if a form lies in a cycle it is equivalent to
forms in that cycle, we ask whether the inverse is true, i.e., if two forms
are equivalent then they belong to the same cycle.

Main theorem of Zagier reduction. The main theorem of Zagier’s
reduction is this: “ Two forms F and F ′ with discriminant ∆ are said to be
equivalent if and only if they belong to the same cycle.”
To prove this we first state the fundamental lemma:

Lemma 7. Assume that there are Z-reduced forms F and F ′ such that F ′ = F |S
1 where S ∈ SL2Z. Then S = S1S2 . . . Sn is a product of reduction matrices and
the forms F1 = F |S1,F2 = F1|S2,F3 = F2|S3 . . . Fn = Fn−1|Sn are all
Z-reduced.

Now, we are equipped to prove the ’main theorem’. Suppose that there
are two equivalent forms F and F ′. It means that F ′ = F |S for some
S ∈ SL2Z. By the fundamental lemma we know that S = S1S2 . . . Sn is a
product of reduction matrices and hence F ′ is in the same cycle as F since
F transforms into F ′ through a series of reduced forms.
Hence, to compute the class number of the determinant, we simply find
all the Z-reduced forms and determine which cycle they belong to.

1F ′ = F |S means that F ′ is obtained by the action of S ∈ SL2Z on F
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2.5 Gauss reduction
Many reduction theories have been introduced and one among those is
the classical one given by Gauss. It is primarily used to do computations
as the coefficients obtained by this theory are small and easy to handle.
We will see what it means to be reduced in the sense of Gauss and also try
to introduce a reduction operator similar to the one introduced by Zagier.
There will be analogous theorems and formulations in this section.

So, we begin by what it means to be reduced according to Gauss
Consider the form F = (A,B,C) with a positive non-square determinant
∆. Such a form is said to be Gauss-reduced or ’reduced’ in this case if

•
√

∆− 2|A| < B <
√

∆

•
√

∆− 2|C| < B <
√

∆

An analogue to Theorem 2 is the following theorem

Theorem 3. Let F = (A,B,C) be a primitive indefinite form with discriminant
∆ = B2 − 4AC and let ε1 = −B+

√
∆

2A
, ε2 = −B−

√
∆

2A
denote the two roots of the

quadratic equation F (x, 1) = Ax2 +Bx+C = 0. Then the following statements
are equivalent:

1. (A,B,C) is reduced

2. (C,B,A) is reduced

3. 0 <
√

∆−B < 2|A| <
√

∆ +B

4. 0 <
√

∆−B < 2|C| <
√

∆ +B

5. ε1ε2 < 0 and |ε1| < 1 < |ε2|

6. AC < 0, B > |A+ C|

Proof. (1)⇔ (2) It is trivial to see this due to the underlying symmetry in
the definition of reduced form.
(1)⇒ (3) From the definition 0 <

√
∆− 2|A| < B and 0 <

√
∆− 2|C| < B

Consider 2|A| = |B
2 −
√

∆|
2|C|

<
|(
√

∆−B)(
√

∆ +B)|√
∆−B

=
√

∆ +B

(3)⇒ (1)
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0 <
√

∆−B ⇒ B <
√

∆ and

2|C| = |B
2 −
√

∆|
2|A|

>
|(
√

∆−B)(
√

∆ +B)|√
∆ +B

=
√

∆−B or 2|C| >
√

∆−B.

So, we conclude that (1)⇔ (3)
Similarly, we can say that (2)⇔ (4) which means that statements from 1
to 4 are equivalent.
(3)⇒ (5) Take statement 3 and divide by 2|A| and follow this up by
taking modulus. You shall get |ε1| < 1 < |ε2|. Now,
0 < ∆−B2 = −4A2ε1ε2 which implies that ε1ε2 < 0.
(5)⇒ (3) Multiply the inequality by 2|A| to get
|
√

∆−B| < 2|A| < |
√

∆ +B|. From ε1ε2 < 0 we get
(
√

∆−B)(
√

∆ +B) > 0. If both the terms are positive then we get our
required inequality of 3 and if both are negative then also the inequality
of 3 is obtained. This means that all statements from 1 to 5 are equivalent.
(5)⇒ (6) 4AC = B2 −∆ and from statement 3 we know that B2 −∆ < 0
therefore AC < 0.
|ε1| < 1 < |ε2|means that ε1 = |−B+

√
∆|

2|A| < 1 < |−B−
√

∆|
2|A| = ε2

−B +
√

∆ < 2|A| < B +
√

∆

−B < 2|A| −
√

∆ < B

So,

(2|A| −
√

∆|)2 < B2

4A2 +B2 − 4AC − 4|A|
√

∆ < B2

|A|+ |C| <
√

∆ < B

Important to note is that all these steps can be traced back, they are all
equivalent and hence we have that (6)⇒ (3). Hence, our claim is
proven.

Now, we attempt to put a bound on the coefficients of Gauss-reduced form.

Lemma 8. If the form F = (A,B,C) is reduced, then B > 0, AC < 0 and
0 < |A|, B, |C| <

√
∆.

Proof. The first two inequalities are immediate from Theorem 3. Also,
B <

√
∆ since F is reduced.

From Theorem 3 we have 2|A| <
√

∆ +B < 2
√

∆⇒ |A <
√

∆|. Similarly
2|C| <

√
∆ +

√
∆. Hence, claim is proven.
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From this lemma we see that there are finitely many Gauss-reduced forms
with a positive nonsquare determinant ∆.
Now, we define a reduction operator like the one defined by Zagier.
A form F = (A,B,C) with discriminant ∆ we define the right neighbour
(ρ(F )) of F in the following manner:

1. C ′ = A

2. B +B′ ≡ 0 (mod 2A′) and
√

∆− |2A′| < B′ <
√

∆

3. B′2 − 4A′C ′ = ∆

This formulation can also be presented in the form of matrices

(ρ(F ) = F |S) by the action of S =

(
0 1
−1 t

)
=

(
0 1
−1 0

)(
1 −t
0 1

)
which is

basically a shift followed by a flip. Here, t = B+B′

2A′

Lemma 9. 1. If F is a primitive indefinite form, then ρ(F ) is semi-reduced.

2. If F is reduced then so is ρ(F ).

Proof. 1. Let ρ(F ) = (A′, B′, C ′) then
√

∆− |2A′| < B′ <
√

∆. If A′ < 0
then |2A′| = −2A′ so

√
∆ + 2A′ < B′ <

√
∆. If A′ > 0 then

|2A′| = 2A′ so
√

∆− 2A′ < B′ <
√

∆. This clearly proves that ρ(F ) is
semi-reduced.

2. Let ρ(F ) = (A′, B′, C ′)
√

∆− |2A′| < B′ <
√

∆ by the very way of constructing ρ(F )
√

∆− |2C ′| < B′ <
√

∆ is true because F is reduced.

There are many more properties that are similar to the one obtained by
Zagier’s reduction operator. We are stating a few properties regarding the
cycles generated by ρ:

1. ρ is injective on the set of semi-reduced forms and hence permutes
the reduced forms.

2. Two forms are equivalent if and only if they belong to the same
cycle as obtained by the permutation of reduced forms by ρ.
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2.6 Interpreting Zagier’s proof of two squares
theorem

Zagier’s Proof. Consider the set

S = {(x, y, z) ∈ N3 : x2 + 4yz = p}

where p ≡ 1 (mod 4). Now, the map

g =


(x+ 2z, z, y − x− z) ifx < y − z
(2y − x, y, x− y + z) ify − z < x < 2y

(x− 2y, x− y + z, y) ifx > 2y

is claimed to be an involution on S with a single fixed point namely
(1, 1, p−1

4
). We are now going to verify all the claims and proceed further

with the proof.
Note that x 6= y − z for if it were true then x2 + 4yz = (y + z)2 which is not
a prime, similarly if x = 2y then x2 + 4yz = 4(y2 + yz) which is also not a
prime therefore the cases below exhaust all posibilities. First, we claim
that g maps from S to S and that g indeed is an involution.
Suppose x < y − z then the first case of the mapping is used and we get
g(x, y, z) = (x+ 2z, z, y − x− z) but x+ 2z > 2z therefore
g(g(x, y, z)) = (x, y, z)
If x > 2y then from the third case of mapping gives us
g(x, y, z) = (x− 2y, x− y + z, y) but x− 2y < x− y + z − y therefore
g(g(x, y, z)) = (x, y, z)
If y − z < x < 2y then the second case of mapping gives us
g(x, y, z) = (2y − x, y, x− y + z) but y − x+ y − z < 2y − x < 2y therefore
g(g(x, y, z)) = (x, y, z)
This proves that if there is a fixed point in this involution then it must
belong to the second case. So, 2y − x = x, y = y and z = x− y + z implies
that x = y.

x2 + 4xz = x(x+ 4z) = p

but p is a prime therefore only possibility is x = 1 = y and z = p−1
4
. Hence,

the only fixed point of the above involution is (1, 1, p−1
4

). Thus, S has an
odd cardinality.
Now, consider the simpler involution

(x, y, z) 7→ (x, z, y)
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on the set with odd cardinality then it will have exactly a single fixed
point, y = z or x2 + 4y2 = p as desired.

The insights to the above involution can be found in [3]

Heath-Brown’s version. This version deals with three involutions. First
consider the set

S = {(x, y, z) ∈ Z3 : 4xy + z2 = p, x > 0, y > 0}

where p ≡ 1 (mod 4)
Also, consider the sets

T = {(x, y, z) ∈ S : z > 0}

and
U = {(x, y, z) ∈ S : x− y + z > 0}

Now, let’s define the involution

f : (x, y, z) 7→ (y, x,−z)

f maps S to S.
f maps points in T to points in S\T 2.
Similarly, f maps points in U to points in S\U .
Thus, a bijection is established between T and S\T as well as between U
and S\U . This implies that all of them have the same cardinality, i.e.,
|T | = |U | = |S\T | = |S\U |.
A second involution is defined on U by

g : (x, y, z) 7→ (x− y + z, y, 2y − z)

it is easy to verify that it is an involution, simply calculate

g(g(x, y, z)) = g(x−y+z, y, 2y−z) = (x−y+z−y+2y−z, y, 2y−2y+z) = (x, y, z)

Now, if it were to have a fixed point then x = x− y + z, y = y and
z = 2y − z or y = z. Therefore, by similar calculations as in Zagier’s proof
we obtain the fixed point to be (p−1

4
, 1, 1). Since, there is only 1 fixed point

therefore the cardinality of U is odd.
Finally consider this involution on T defined by

h : (x, y, z) 7→ (y, x, z)

2S\T means points in S but not in T
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must also have a fixed point since T also has an odd cardinality. Hence,
there exists (x, y, z) ∈ S such that x = y and this implies that 4y2 + z2 = p
as desired.

Interpretation using Quadratic forms. Our first job is to link the set S 3

to the coefficients of a form, to this we say that the points (x, y, z) ∈ S
corresponds to binary quadratic forms (A,B,C) = (−y, x, z) with
discriminant ∆ = B2 − 4AC = x2 + 4yz = p.
A < 0, B > 0 and C > 0 and the fixed point of the second involution is
when y = z which corresponds to the form (−y, x, y). So, we can define
the same involutions as used by Zagier and apply it to the quadratic form
(A,B,C) as follows:

g(A,B,C) 7→


(C,B + 2C,−A−B − C) ifA+B + C < 0

(A,−2A−B,A+B + C) ifA+B + C > 0, B + 2A < 0

(−A−B − C,B + 2A,−A) ifB + 2A > 0

h : (A,B,C) 7→ (−C,B,−A)

Consider binary quadratic forms (A,B,C) with a prime discriminant
∆ = B2 − 4AC = pwhere p ≡ 1 (mod 4). Such a form is called
pre-reduced if A < 0, B > 0 and C > 0. There are only finitely many
pre-reduced forms and they satisfy 0 < B <

√
∆ =

√
p,

0 > A ≥ −∆−1
4

= −p−1
4

and 0 < C ≤ p−1
4
.

Lemma 10. If (A,B,C) is pre-reduced then so is (−C,B,−A)

This is true from the very definition.
Building up on this we can define a function ζ = h ◦ g that sends a
pre-reduced form (A,B,C) to

ζ(A,B,C) 7→


(A+B + C,B + 2C,C) ifA+B + C < 0

(−A−B − C,−2A−B,−A) ifA+B + C > 0, B + 2A < 0

(A,B + 2A,A+B + C) ifB + 2A > 0

If A+B + C = 0 then ∆ = B2 − 4AC = (A− C)2 is a square which is
obviously not a prime. Similarly, if B + 2A = 0 then ∆ = 4(A2 − AC)
which is even and hence not a prime. Hence, the conditions exhaust all
possiblities and are disjoint.

3S is the same as described by Zagier in his proof

22



Proposition 4. If F is pre-reduced, then so is ζ(F )

Proof. Set ζ(A,B,C) = (A′, B′, C ′)

1. A+B + C < 0. Here, A′ = A+B + C < 0, B′ = B + 2C > 0 since
B,C > 0 this also means that C ′ = C > 0

2. A+B + C > 0, B + 2A < 0. Here, A′ = −(A+B + C) < 0,
C ′ = −A > 0 and B′ = −(2A+B) > 0

3. A+B + C > 0, B + 2A > 0. Here, A′ = A < 0, B′ = B + 2A > 0 and
C ′ = A+B + C > 0

Lemma 11. We have F ∼ ζ(F ) where ∼ denotes equivalence with respect to the
action of GL2Z 4

Proof. We distinguish the three cases

1. A+B + C < 0. Here, ζ(F ) = F |S where S =

(
1 0
1 1

)
∈ GL2Z

2. A+B + C > 0, B + 2A < 0.Here, ζ(F ) = F |S where

S =

(
1 1
1 0

)
∈ GL2Z

3. A+B + C > 0, B + 2A > 0.Here, ζ(F ) = F |S where

S =

(
1 1
0 1

)
∈ GL2Z

Now, we are ready to prove the following proposition

Proposition 5. Every primitive form with discriminant ∆ ≡ 1 (mod 4) is
GL2Z equivalent to a pre-reduced form.

Proof. Every primitive form is SL2Z equivalent to a Gauss-reduced form
(A,B,C) which satisfies B > 0 and AC < 0. If (A,B,C) is not pre-reduced

then A > 0 and C < 0 so we can apply
(

0 1
1 0

)
∈ GL2Z to obtain

(A′, B′, C ′) = (C,B,A) which is pre-reduced since A′ = C < 0, B′ = B > 0
and C ′ = A > 0.

4GL2Z is the group of matrices with integer elements and discriminant equal to either
+1 or −1
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Lemma 12. The map ζ is injective on the set of pre-reduced forms.

Proof. Let there be two forms F1 and F2 such that ζ(F1) = ζ(F2). But we
know that ζ is a composition of two functions. Hence, we analyse in the
following manner:

h(g(F1)) = h(g(F2))

Since, both h and g are both involutions therefore we proceed further in
following way:

h(h(g(F1))) = h(h(g(F2)))

g(F1) = g(F2)

g(g(F1)) = g(g(F2))

F1 = F2

Hence, our claim is proven.

Lemma 13. If ζ(A,B,C) = (A′, B′, C ′) then ζ(−C ′, B′,−A′) = (−C,B,−A).

Proof. We handle this in a case wise manner:

1. A+B + C < 0. Here (A′, B′, C ′) = (A+B + C,B + 2C,C). Hence,
ζ(−C ′, B′,−A′) = (−C,B + 2C,−A−B − C). Since,
B′ − C ′ − A′ = −A > 0 and B′ − 2C ′ = B + 4C > 0 therefore
ζ(−C ′, B′,−A′) = (−C,B,−A). (condition 3)

2. A+B + C > 0, B + 2A < 0. Here
(A′, B′, C ′) = (−A−B − C,−2A−B,−A). Hence,
ζ(−C ′, B′,−A′) = (A,−2A−B,A+B + C). Since,
B′ − C ′ − A′ = C > 0 and B′ − 2C ′ = −B < 0 therefore
ζ(−C ′, B′,−A′) = (−C,B,−A). (condition 2)

3. A+B + C > 0, B + 2A > 0. Here
(A′, B′, C ′) = (A,B + 2A,A+B + C). Hence,
ζ(−C ′, B′,−A′) = (−A−B − C,B + 2A,−A). Since,
B′ − C ′ − A′ = −C < 0 therefore ζ(−C ′, B′,−A′) = (−C,B,−A).
(condition 1)

From all of these we can conclude that the fixed points of ζ are quadratic
forms of the like (A,B,−A). And, now we come to prove the main
theorem.
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Let us first observe an example: the reduction cycle of ∆ = 41 produced
by ζ

(−10, 1, 1)→ (−8, 3, 1)→ (−4, 5, 1)→ (−2, 3, 4)→ (−5, 1, 2)→ (−2, 5, 2)→

(−2, 1, 5)→ (−4, 3, 2)→ (−1, 5, 4)→ (−1, 3, 8)→ (−1, 1, 10)→ (−10, 1, 1)

Theorem 4. The principal (anti-symmetric) cycle of ζ containing the form
F = (−p−1

4
, 1, 1) has an odd length and a single fixed point of the form as

mentioned above. Hence, p can be written as the sum of two squares.

Proof. From Lemma 13 it is clear that if ζ(A,B,C) = (A′, B′, C ′) then
ζ(−C ′, B′,−A′) = (−C,B,−A). What this means is that we can extend
this cycle by "coupling" a form (A,B,C) with its anti-symmetric partner
(−C,B,−A).
Now, if we try to figure if ζ(A,B,C) = (−C,B,−A) where (A,B,C) is
primitive we find that the solution exists only in the case of second
condition in map of ζ . Hence, we can say that −C = −A−B − C and
−B − 2A = B, both of this implies that A = −B.
Now, if we consider the form (A,−A,C) then discriminant
∆ = A2 − 4AC = A(A− 4C) = p. Since p is a prime and A < 0 therefore
the solution to this is A = −1, A− 4C = −pwhich corresponds to the
form (−1, 1, p−1

4
) (anti-symmetric to F). But this means that the cycle

cannot have an even length for if there were we would have two solutions
to ζ(A,B,C) = (−C,B,−A). But then this means there is a fixed point in
the cycle that gives a form (A,B,−A), and this means p = B2 + 4A2 as
claimed.

2.7 Gauss’s class number problem
Gauss’s Conjecture: There are no discriminants less than 163 with class
number 1.
We now state and prove a few results.

1. Assume thatm ≡ 2, 3 (mod 4) is squarefree andm < −2 and let
∆ = 4m. Then h(∆) > 1.
Ifm ≡ 3 (mod 4) then (1, 0,−m) and (2, 2, 1−m

2
) are distinct reduced

forms with discriminant 4m. Ifm ≡ 2 (mod 4), consider (1, 0,−m)
and (2, 0,−m/2).
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2. If ∆ = 1− 4m and h(∆) = 1, then ∆ is a prime.
Suppose p|∆, p is represented by some form with discriminant ∆.
But h(∆) = 1 so the only possible form is the principal form
(1, 1,m). Thus we have 4F0(x, y) = 4p = (2x+ 1)2 −∆y2.
The representation is proper and hence (x, y) = 1 and
p|(2x+ 1)⇒ pk = 2x+ 1.

4p = k2p2 −∆y2

Since, (x, y) = 1 therefore y2 ≥ 1. Now, consider

4 = k2p− ∆

p
y2 ≥ k2p− ∆

p
> 3 + 1 = 4

a contradiction. Hence, k = 0 which means that 2x+ 1 = 0. So,
4p = −∆y2. Since gcd(∆, 4) = 1 therefore y is even so p = −∆(y′)2.
Thus we can conclude that y′ = 1 or y = ±2 which would mean that
∆ = ±p and our claim is proven.

3. If ∆ = 1− 4m < −3 and h(∆) = 1, thenm is prime.
Consider the principal form (1, 1,m). It is clearly
Langrange-reduced since |1| ≤ 1 ≤ m. Supposemwere not prime
thenm = ab for some integers a, b. But this means that there is
another Langrange-reduced form (a, 1, m

a
) with discriminant ∆

which is a contradiction to h(∆) = 1 and hence not possible. m is a
prime.

4. If ∆ = 1− 8m < −7, then h(∆) > 1.
Consider the form (2, 1,m) withm ≥ 2. It is not equivalent to the
principal form hence job is complete.

5. If ∆ = 1− 4m and h(∆) = 1, then
(

∆

p

)
= −1 for all p < m.

From Lemma 2 we know that if
(

∆

p

)
6= −1 for all p < m then there

is a Langrange-reduced form with discriminant ∆ that primitively
represents p. If such a case were true then we can say that the
principal form (1, 1,m) represents p. The principal form is
Langranged-reduced and hence by Legendre’s Lemma we know that
the smallest integers primitively represented by the form are 1,m
hence, p ≥ mwhich is a contradiction to our assumption. Hence,(

∆

p

)
= −1 for all p < m.
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6. If ∆ = 1− 4m and
(

∆

p

)
= −1 for all p <

√
−∆/3, then h(∆) = 1.

Let F = (A,B,C) be a reduced form with discriminant ∆. If A > 1

then there is a prime p|A and this gives us
(

∆

p

)
= 0. Since, the

form F is Langrange-reduced therefore 1 ≤ p ≤ A ≤
√
−∆

3
A =

√
−∆/3 is possible when A = B = C =

√
−∆/3 which is a

contradiction as (A,B,C) is primitive.
Hence, A = 1. This gives us B = −1, 0, 1. But B and ∆ have same
parity therefore B = ±1. Also, B > 0 hence B = 1. This gives
C = m. So, we have one unique form (1, 1,m) or equivalently
h(∆) = 1.

Theorem 5. Let ∆ = 1− 4m be squarefree and negative. Then the following
statements are equivalent:

1. h(∆) = 1

2.
(

∆

p

)
= −1 for all p <

√
−∆/3

3.
(

∆

p

)
= −1 for all p < m

Proof. We know that (1)⇒ (3), (2)⇒ (1). Also, (3)⇒ (2) since 4m−1
3

< m.
Thus we conclude that all three statements are equivalent.

Theorem 6. For fundamental discriminants ∆ = 1− 4m ≤ −7, the following
statements are equivalent:

1. h(∆) = 1

2. f(x) = x2 + x+m attains only prime values for x = 0, 1, 2, . . .m− 2

Proof. The polynomial f is known as the Euler polynomial and the stated
theorem is a special case of the Rabinowitz criterion.

Proposition 6. If ∆ = 1− 4m and h(∆) = 1 then every integer < m2

represented by the principal form F0 with discriminant ∆ is prime.

Proof. Suppose not, then there is an integer n < m2 represented by the
principal form with discriminant ∆. Let p be a divisor of n then
p <
√
m2 = mwhich must also be represented by F0 but by Legendre’s

lemma the the smallest integers represented by F0 are 1,m hence p ≥ m is
a must. A contradiction. Hence, our assumption is wrong.
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Proposition 7. If ∆ = −8m and h(∆) = 2, then every integer < (m+ 2)2

represented by some form with discriminant ∆ is prime.

Proof. Since the class number is 2 the only reduced forms with
discriminant −8m are (1, 0, 2m) and (2, 0,m). Both are Langrange-reduced
and hence Legendre’s lemma can be used in similar manner as above to
obtain a contradiction.
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Chapter 3

Conclusions

3.1 Conclusion
The most important lesson that I have learnt while doing this project is
the importance of a mathematical structure. How important it is to first
define a foundation for the structure and slowly build up on that to give us
another platform to investigate. The main objective has always been to
build something else on the already established foundation. This was the
basis for the reduction theories where we first define what it means to be
’reduced’ and then try to find more properties regarding them, then we
proceed to classify them and study each group separately and the process
continues.
Zagier’s proof is a very special proof for it is very short but has a very
deep and beatiful structure supporting it. Also, later we can see the link
of quadratic forms with different other branches like continued fractions,
a geometric view on the complex plane. Gauss’s class number problem is
another infamous problem that has been tackled by so many people and
it is amazing how the proof involves intricate and advanced topics like
elliptic curves, class field theory, and others.

3.2 Future Prospects
The study of binary quadratic forms is very important, especially in the
study of solutions to the Pell’s equation. The solution to Pell’s conics have
been of deep interest, as seen in [2] it has been linked to the automorphs
in SL2Z that are instrumental in reduction of binary quadratic forms. The
solutions are also obtained using continued fractions which is also seen in
later chapters of [1], [2]. Further study can be done in elliptic curves and
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diophantine approximations as well.
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