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Preface

For a number field K, let ζK(s) denote the Dedekind zeta function, a priori defined
only for Re(s) > 1 by the Euler product

∏
p:finite places

(
1− 1

Nps

)−1

We can analytically continue this function to the entire complex plane and obtain a
functional equation as well. Dirichlet was able to show that there is a pole of ζK(s)
at s = 1 and infact the residue at s = 1 is of utmost importance. He showed that

Ress=1ζK(s) =
2r1(2π)r2√
|d|

hR

e

where r1 is the number of real embeddings, r2 the number of complex embeddings,
d is the absolute discriminant, R is the regulator, h is the class number, e is the
number of roots of unity contained in K. This is one of the many instances where the
special value of a L-function is related to an arithmetic invariant of the underlying
algebraic object.

Artin introduced L-functions L(χ, s) attached to any complex representation χ :

Gal(K/K) → Q× of the absolute Galois group of number fields. In a series of
papers starting in [Sta71], Stark studied the special values of these L-functions and
conjectured that

Ress=0
L(χ, s)

srχ
= R(χ)A(χ)

where rχ is given, R(χ) is the generalised regulator and A(χ) is some arithmetic
constant. Stark’s conjecture was refined and reformulated by Tate in [Tat84]. Soon
after, Deligne-Ribet [DR80], Cassou-Nogues[Cas79], Barsky[Bar78] were able to con-
struct p-adic L-functions which interpolate to special values of these L-functions.
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Preface

Gross conjectured a similar formula for the leading term of the p-dic L-functions

Ress=0
Lp(ωχ, s)

sr
= Rp(χ)A(χ)

where Rp is the p-adic regulator. This conjecture is known as the Gross-Stark
conjecture. Gross proved the K = Q case and using the methods developed in
[Wil88][Wil90], Dasgupta-Darmon-Pollack [DDP11] were able to prove the conjec-
ture for the rank one case under the additional hypothesis that Leopoldt’s con-
jecture holds. The assumption on Leopoldt’s conjecture was removed by Ventullo
in [Ven15][Ven14] and the Gross-Stark conjecture was proved in full generality by
Dasgupta-Kakde-Ventullo in [DKV18]. My masters thesis is to understand the proof
of the Gross-Stark conjecture in the two seminal papers.

The current version of the thesis contains an exposition to the work of Dasgupta-
Darmon-Pollack. In the first chapter, we give an introduction to Stark’s conjecture
as formulated by Tate in his highly regarded book [Tat84] (the Bible for Stark’s
conjectures) and Gross’s p-adic formulation of the conjecture.

Chapter 2 contains the cohomological interpretation of the Gross-Stark conjecture
and reduces the conjecture to finding a cohomology class of the appropriate type.

Chapter 3, 4 deal with the contruction of the cohomology class using the methods
initiated in Wiles papers [Wil86][Wil88][Wil90] (they are in turn inspired by [Rib90]).

The current draft is unfinished. We intend to cover the work of Dasgupta-Kakde-
Ventullo in the final draft and also provide an excursion into other beautiful conjec-
tures of Stark and their refinements. Some proofs have also been excluded to make
the exposition brief and avoid repeating what has already been written beautifully
in the original papers. We only provide the details that we felt were missing while
reading the papers.
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Notation

Let k be a global field, i.e. a finite extension of Q or Fq(t). The places or equivalence
classes of absolute values of k is denoted by v, v′, . . .. If Q ⊆ k, we use p, q, . . . to
denote the finite places of k to distinguish it from other ideals of the ring of integers
of k (denoted by other fractal letters). Given a finite extension K/k, by w,w′, . . .

we denote the places of K that extend v, v′, . . .. We use capital gothic letters P,Q

to denote the places of K that divide p, q.
The complete local fields are denoted by kv, Kw, kp, KP; the ring of integers by

Ov,Ow,Op,OP. If w is a place of K extending v, the degree of extension [Kw : kv]

is denoted by [w : v].
If S is a finite set of places of k containing all the Archimedean places of k, we

can define the ring of S-integers

OS := {x ∈ k : x ∈ Op ∀ p 6∈ S} =
⋂
p ̸∈S

Op

to be the Dedekind domain obtained by inverting all the primes of k contained in
S.

We simply write ||v, ||w, ||p, ||P, . . . for the normalised absolute values attached to
the places indicated in the subscript. If x ∈ k×, we have µ(xU) = |x|vµ(U) for
all compact sets U in the interior of kv and all choices of Haar measure µ on the
additive group kv. More explicitly, the absolute values are

|x|v =


usual absolute value if kv ' R

sqaure of usual absolute value if kv ' C

Nv−1 if kv is non-Archimedean

For x ∈ Z×
p , we have the factorisation

Z×
p = (Z/2pZ)× × (1 + 2pZp)

= ω(x)〈x〉

vi



Notation

with ω and 〈·〉 defined by the decomposition above.
〈·〉 will also be used to denote the ideal generated by ·. The two usage shall be

clear from context.
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1. Introduction

This chapter (more specifically §§1.1-1.5) follows [Tat84, §1 , §§0-4 ] closely. I have
provided proof of statements that the book chooses to leave. I claim no originality
in the presentation. This chapter(§§1.1-1.5) is mostly a translation of the chapter
in loc. cit.

1.1. Dirichlet’s analytic class number formula
Suppose k is a number field (finite extension of Q), and ζk(s) is the Dedekind zeta
function of k, defined for Re(s) > 1 by the Euler product

ζk(s) :=
∏
p

(
1− 1

Nps

)−1

(1.1)

where the product is over all the prime ideals of k. A famous theorem of Dedekind
[Theorem 40 Mar18, p. 123], a generalisation of a theorem of Dirichlet, states that

Theorem 1. ζk(s) has a simple pole at s = 1, and the residue at s = 1 is

2r1(2π)r2√
|d|

hR

e
(1.2)

where r1 (resp. r2) is the number of real (resp. complex) embeddings of K, d the
discriminant of k, h the class number of k, and e the number of roots of unity
contained in k.

The functional equation of ζk(s) (cf. Appendix F) allows us to rewrite this theorem
into a statement around the point s = 0.

Proposition 2. The Taylor expansion of ζk(s) around s = 0 is given by

ζk(s) = −
hR

e
sr1+r2−1 +O(sr1+r2) (1.3)

1



1. Introduction

Proof. If Λk(s) = 2r2(1−s)|d|s/2π−ns/2Γ(s/2)r1Γ(s)r2ζK(s), then by the functional
equation we have

Λ(s) = Λ(1− s)

as W (χ) = 1 if χ is trivial. Thus, using Dirichlet’s analytic class number formula at
s = 1, and the fact that Γ(s) has a pole at s = 0 with residue 1, we have

sζK(s) ∼ −
hR

e
sr1+r2

as s goes to 0. This completes the proof.

The above proposition gives us the first non-zero term in the Taylor series ex-
pansion of ζk(s) around s = 0. Stark’s conjecture will state a similar result but for
Artin L-functions. Before proceeding further, we will state Dirichlet’s analytic class
number formula in a slightly general setting of S-units.

Let S be a finite set of places of k containing the Archimedean places S∞. For
Re(s) > 1, we can define the generalised zeta function

ζk,S(s) =
∏
p ̸∈S

(
1− 1

Nps

)−1

(1.4)

By Cl(Ok,S) we will denote the ideal class group of the S-integers, and hk,S will
denote the size of this class group.

Definition 3. O×
S is finitely generated abelian group and thus has a free-part and a

torsion part. By the S-unit theorem (cf. the next section) the rank of the free part
is r = |S| − 1. Let {u1, . . . , ur} be a set of fundamental units modulo the torsion
(O×

S )tors. The regulator RS is defined to be

RS =

∣∣∣∣∣∣ det
1≤i≤r

v∈S\{v0}

(log |ui|v)

∣∣∣∣∣∣ (1.5)

where v0 is an arbitrarily chosen Archimedean prime in S.

Remark 4. A priori, it looks like the definition depends on the choice of the
Archimedean place v0, and the choice of basis {u1, . . . , ur}. But, the dependence
on v0 can be removed by the product formula. Let {ε1, . . . , εr} be another set of

2



1. Introduction

fundamental units. Then, one can show that

RS({ui}) = RS({εi})[〈ui〉 : 〈εi〉]

where the index is just the determinant of the transformation matrix. For funda-
mental units, the determinant is 1 and thus RS does not depend on the choice of
fundamental units.

Lemma 5. Let p be a place of k not contained in S. Let T = S ∪ {p}. Let m be
the order of p in the ideal class group of S-integers OS. We can conclude that

1. hS = mhT

2. RT = m(logNp)RS

3. ζk,T (s) ∼ (logNp)sζk,S(s) in the neighbourhood of s = 0

Proof. There is a natural map from I(OS) → I(OT ) via a 7→ aOT . This map
is surjective (look at the prime factorisation). Now, combining with the standard
projection map I(OT ) → C(OT ) we have a surjective map C(OS) → C(OT ). To
finish the proof of first assertion, it is enough to show the following sequence is exact:

0 [p] C(OS) C(OT ) 0

where [p] is the class of p in the ideal class group C(OS). We have already shown
the surjection. Let us prove the injectivity of the map [p]→ C(OS). Let a ∈ I(OS)
be in the kernel of the map C(OS) → C(OT ), then there exists α ∈ k× such that
aOT = αOT . As S ⊆ T , we can conclude that vq(a) = vq(αOS) for all places
q 6= p. Thus, a = peαOS with e = vp(a) − vp(α). As both sides are fractional ide-
als of OS with same valuation at all places, this completes the proof of first assertion.

Let {u1, . . . , ur} be a set of fundamental units of O×
S /(OS)tors. If pm = $OS, then

{u1, . . . , ur, $} is a system of units for O×
T /(OT )tors. Indeed, if u ∈ O×

T , then after
scaling with appropriate power of $ we can assume that 0 ≤ vp(u) ≤ m− 1. Then,
uOS = pvp(u) as the valuations of both sides is equal for all places. But the order
of [p] in C(OS) is m and so vp(u) = 0 or equivalently, u ∈ O×

S . Back to the second
assertion. Note that vq($) = 0 for all q 6= p and so the matrix MT corresponding

3



1. Introduction

to the regulator RT has the form

MT =

[
MS ?

0 log |$|p

]

Hence, RT = RS log |$|p = RS ·m · logNp.

The third assertion follows from the observation

ζk,T (s) =
(
1− Np−s

)
ζk,S(s)

and taking limit as s→ 0.

The following theorem follows immediately from the above lemma.

Theorem 6. In the neighbourhood of s = 0, we have

ζk,S(s) ∼ −
hSRS

e
s#S−1

1.2. Artin L-functions
Suppose K is now a finite Galois extension of k, with Galois group G. One has

χ : G→ C

a character of a representation G→ GL(V ) with V a finite dimensional vector space
over C.

Fix a finite set of places of k, S, then one can simply write

LS(s, χ) =
∏
p ̸∈S

det(1− σPNp−s | V IP)−1

for the Artin L-function (relative to S) attached to χ. Here P denotes an arbitrary
place of K lying above p, and σP ∈ GP/IP is the Frobenius automorphism of the
extension of the residue fields P/p. The function L(s, χ) does not depend on the
choice of the prime P as all the Frobenius elements are conjugate to each other and
determinant is invariant under change of basis.

In a neighbourhood of s = 0, set

4



1. Introduction

LS(s, χ) = c(χ)sr(χ) +O(sr(χ)+1)

We are interested in finding c(χ) but first we will determine the multiplicity r(χ).
Let SK be the finite set of places of K lying above the places in S, the finite set of
places of k; and Y the free abelian group with basis SK . Let

X =

{∑
w∈SK

nww ∈ Y :
∑
w∈SK

nw = 0

}
The Galois group G acts naturally by permutation of the places w dividing v for
each v ∈ S. Thus we obtain a G-module structure on Y and on X. We have an
exact sequence of G-modules :

0 X Y Z 0

∑
nww

∑
nw

Definition 7 (Notation). For a Z-module B and a subring A of C, by AB we mean
the tensor product A⊗Z B. Let χX be the character of the representation CX of G,
and similarly χY of CY .

Remark 8. Note that χX = χY − 1.

Evidently, χY =
⊕
v∈S

IndGGw
1Gw , where for each v ∈ S, w is a place of K dividing

v chosen arbitrarily. In particular, χY and χX take their values in Z.

Proposition 9. If χ is a character of a C[G]-module V (finite dimensional C vector
space), then

r(χ) =

(∑
v∈S

dimV Gw

)
− dimV G = 〈χ, χX〉G = dimC HomG(V

∗,CX)

where V ∗ is the dual of V .

Proof. We have a canonical homomorphism HomC(V
∗,CX) ' V ∗∗ ⊗C CX ' V ⊗C

CX. Thus, HomG(V
∗,CX) ' (V ⊗C CX)G. Using the othogonality of characters

one has dimC HomG(V
∗,CX) = 〈χχX , 1〉G = 〈χ, χX〉G. Moreover, χX = χX (χX

only takes integer values) and thus we have the last equality.

5



1. Introduction

The second equality follows from Frobenius reciprocity in the following way:

〈χ, χX〉G = 〈χ, χY 〉G − 〈χ, 1〉G
=
∑
v∈S

〈χ, IndGGw
1Gw〉G − 〈χ, 1〉G

=
∑
v∈S

〈χ|Gw , 1Gw〉Gw − dimC V
G

=
∑
v∈S

dimC V
Gw − dimC V

G

It remains to show the first equality. By Brauer-Nesbitt theorem,

χ =
∑
ψ

nψIndGHψ

where ψ are 1 dimensional characters of subgroups H of G. Again, by Frobenius
reciprocity

〈χ, χX〉G =
∑

nψ〈χ|H , ψ〉H

Next, by properties of L-functions

r(χ) =
∑

nψr(ψ)

Comparing the two relations tell us that it is sufficient to study just the 1 dimen-
sional characters ψ.

If χ = 1G, then LS(s, χ) = ζk,S(s) and so using Theorem 6 gives us

r(χ) = #S − 1 =

(∑
v∈S

dimV Gw

)
− dimV G

If χ is a 1-dimensional character but not the trivial character, then V G = {0}. This
handles one summand. The other summand is a bit tricky. Recall the functional
equation of LS(s, χ)

Λ(1− s, χ) = W (χ)Λ(s, χ) (1.6)

with
Λ(s, χ) = ΓR(s)

a1ΓR

(
s+ 1

2

)a2
L(s, χ)ΓC(s)

r2 (1.7)

6



1. Introduction

and
a1 =

∑
v real

dimV Gw , a2 =
∑
v real

codimV Gw (1.8)

It is a well known fact that L(s, χ) does not vanish at s = 1 and W (χ) is a non-
vanishing holomorphic function. So, if we compare order of vanishing on both sides
of the functional equation, we get

−a1 − r2 + rS∞ = 0⇔ rS∞ = a1 + r2 =
∑
v|∞

dimV Gw

where the last equality comes from the fact that dimC V = 1 and r2 is the number
of complex embeddings of k in Q. As

LS(s, χ) =
∏

p∈S\S∞
χ(Ip)=1

(
1− χ(p)Np−s

)
LS∞(s, χ)

As Gp is generated by Ip and a Frobenius σp, the order of vanishing of LS(s, χ) is
exactly

rS(χ) = #{p ∈ S\S∞ : χ(Gp) = 1}+ rS∞

=
∑

p∈S\S∞

dimV Gp + rS∞

=
∑
p∈S

dimV Gp

This completes the proof.

We will record the observation made in the proof as it is very crucial for our
purposes.

Theorem 10. If χ is a 1-dimensional character of G, then

rS(χ) =

#S − 1 if χ = 1G
#{v ∈ S : χ(Gv) = 1} otherwise

7



1. Introduction

1.3. Stark’s regulator
We will now introduce the type of regulator attached to χ which will figure in the
principal conjecture of Stark. Denote by

U = {x ∈ K× : |x|w = 1 ∀ w 6∈ SK}

the group of SK-units of K, and consider the logarithmic embedding

λ : U −→ RX

u 7→
∑
w∈SK

log |u|ww

where X is as defined in §1.2. This is used in the proof of the theorem of S-units
([Wei95, IV–4, Theorem 9]). The kernel is the group µ(K) of roots of unity contained
in K, and the image is a lattice in RX. We shall record this as a theorem as it will
be cited often.

Theorem 11 (Dirichlet S-unit theorem). The kernel of λ is the group of roots of
unity µ(K) contained in K, and the image is a full lattice in RX with rank #S− 1.
Hence, the group U/µ(K) is a free abelian group on the #S − 1 generators and
1⊗ λ : RU → RX is an isomorphism.

On tensoring with C, λ induces isomorphism (again called λ):

CU ∼−→ CX

compatible with the natural action of G on U and X.

This implies that the two representations of G QU and QX are isomorphic over
Q (Recall that we showed the invariance of this isomorphy of finite group repre-
sentations by extension of scalars (in characteristic zero) either by passing to the
associated characters [Ser77, §12.1] , the note after prop. 33 or by characterising an
isomorphism as a homomorphism with non-zero determinant-refer to [CF10, p. 110]).

Therefore,
f : QX ∼−→ QU (1.9)

8



1. Introduction

is an isomorphism of QG-module, and note again

f : CX ∼−→ CU

its complexification.

The automorphism λ ◦ f of CX induces an automorphism (functorial)

HomG(V
∗,CX) HomG(V

∗,CX)

ϕ λ ◦ f ◦ ϕ

(λ◦f)V

Recall that V ∗ is the dual of the vector space V and following Theorem 10, the
dimension of HomG(V

∗,CX) is exactly r(χ).

Definition 12. The Stark regulator attached to f is defined as:

R(χ, f) = det((λ ◦ f)V ) (1.10)

It is evident that R(χ, f) does not depend on the choice of the vector space V of
χ. The choice of f , on the contrary, is not negligible.

1.4. Stark’s principal conjecture
In the notations in the previous two paragraphs, the statement of the conjecture is
as follows:

Conjecture 13. Let A(χ, f) = R(χ, f)/c(χ) ∈ C ∈ C. Then, for all automorphisms
σ of C, one has the relation

A(χ, f)α = A(χα, f)

where χα = α ◦ χ : G→ C.

We can decompose our statement in the following manner :

1. A(χ, f) belongs to Q(χ)

9



1. Introduction

2. For all σ ∈ Gal(Q(χ)/Q), A(χ, f)σ = A(χσ, f)

Here, Q(χ) is the field of values of χ. It is a cyclotomic extension, and thus Galois
extension of Q. ( [Ser77, §2.1]).

It seems appropriate to reformulate the conjecture starting from the situation
relative to an E (coefficient field) which allows embeddings in C. It is, in fact
sufficient to consider only number fields (finite extension of Q).

Suppose E is a field of characteristic 0 and χ : G→ E a character of the represen-
tation G→ GLE(V ), where V is a vector space of finite dimension over E. (Recall
that G is the Galois group of the extension K/k). Instead of assuming f is rational
(as in in the previous section), let us take any G-homomorphism f : X → EU .

For all α ∈ HomQ(E,C), one can deduce from χ and V a complex character
χα = α◦χ of G and its complexification V α = V ⊗E,αC, to which 2.3 applies. In par-
ticular for each α, we can associate a L-function L(s, χα). Moreover, fα : C → CU
is defined by C-linearity from (α ◦ 1) ◦ f : X → CU , and induces the endomorphism
(λ ◦ fα)V α of HomG(V

α∗,CX). Denote by R(χα, fα) its determinant (it is indepen-
dent of the vector space V over E associated to χ).

In this context, we are then led to the

Conjecture 14. There exists an element A(χ, f) of E such that, for all α : E → C,
we have

R(χα, fα) = A(χ, f)α · c(χα) (1.11)

Remark: The complex conjugation being continuous, it is easy to see that
A(χ, f) = A(χ, f).

1.4.1. Changing the isomorphism f

Proposition 15. The conjecture 13 implies conjecture 14.

It is clear that one can always, in Conjecture 14, one can reduce to the case E = C
and fix an arbitrary embedding α : E → C. It is sufficient to show the independence
of choice of f in this case to show that Conj. 13 implies Conj. 14 :

If the statement in Conj. 14, with E = C, is true for a particular choice of iso-
morphism f0 : CX

∼−→ CU , it is also true for all f : X → CU .

10



1. Introduction

For each C[G]-endomorphism θ of CX, write δ(χ, θ) for the determinant of the
endomorphism θV of HomG(V

∗,C) induced by θ. In fact, δ is clearly independent
of the choice of V associated to χ. One has:

R(χ, f) = δ(χ, λ ◦ f)

The determinants δ obeys the following results:

1. δ(χ+ χ′, θ) = δ(χ, θ) + δ(χ′, θ)

2. δ(Indχ, θ) = δ(χ, θ)

3. δ(Inflχ, θ) = δ(χ, θ|CXH)

4. δ(χ, θθ′) = δ(χ, θ)δ(χ, θ′)

5. δ(χ, f)α = δ(χα, θα) for all α ∈ Aut(C)

Here, (1) is trivial, (2) follows from the fact that for all representation W of
the subgroup H of G and for all C[G]-module Z, there is a natural isomorphism
HomG(IndGHW ) ' HomH(W,Z), where, in the term on the right, Z is considered a
H-module. (3) refers to the following situation:

Suppose k ⊆ K ′ ⊆ K with K ′/k Galois. Denote by H, the group Gal(K/K ′) and
X ′ the abelian group relative to K ′. We then embed X ′ in X by w′ =

∑
w′|w[w :

w′]w =
∑

h∈H w
h
0 where [w : w′] is the degree of the local extension Kw/K

′
w′ , and

w0 is an arbitrary place of K lying above w. It is this normalisation that makes the
following diagram commutative :

U RX

U ′ RX ′

λ

λ′

where the maps λ, λ′ is as defined in §1.3. We then find that X ′ = NHX where
NH =

∑
h∈H h ∈ Z[G], but not, in general X ′ = XH . Nevertheless, NHX has finite

index in XH , and thus we have EX ′ = EXH for a field E of characteristic 0.

That being said, (3) is evident, the formula (4) is trivial, as for (5), let α : C→ C
be be an embedding and write θα = 1 ⊗α θ : C ⊗α CX → C ⊗α CX. Xα is viewed
as C⊗α V by the usual identification

11



1. Introduction

HomC⊗αC[G](C⊗α V ∗,C⊗α CX) = C⊗α HomC[G](V
∗,CX) (1.12)

The endomorphism (θα)V becomes 1⊗α θV , and the determinant is (det θV )α.

Statement 2.6.2 now follows from (5) and the obvious relation:

A(χ, f) = A(χ, f0)δ(χ, θ)

where θ = f−1
0 f .

Example 16. Following the discussion earlier in this section, the conjectures in
section 5 are still equivalent to the statement in Conj. 14 applied to the case E = C
with the isomorphism f = λ−1. This gives R(χ, λ−1) = δ(χ, 1) = 1, and one obtains
this intrinsic but essentially transcendent formulation of the conjecture due to Stark:

For each α ∈ Aut(C), we conjecture that

c(χα)

c(χ)α
= δ(χα, λ ◦ λ−α)

1.5. Reduction to the abelian case and independence
of S

We draw immediately from the previous section the following formulae concerning
the numbers A(χ, f) introduced in §1.4 (or, more generally, in Conj. 14, suppose
E ⊆ C):

1. A(χ+ χ′, f) = A(χ, f) · A(χ′, f)

2. A(Indχ, f) = A(χ, f)

3. A(Inflχ, f) = A(χ, f |CXH)

This formalism allows one to reduce Stark’s conjecture, on the one hand to the
case k = Q (by passing to the Galois closure of K and induction), on the other hand
to the case when characters are of dimension 1 (due to the theorem of Brauer, refer
to Appendix F.)

Proposition 17. 1. If the conjecture is true for all finite Galois extensions K/Q,
then it is also true in general.

12



1. Introduction

2. If the conjecture is true for all irreducible characters of dimension 1 of all
Galois extensions K/k, then it is also true in general.

This being said, let us pass to the independence of the conjectures on the choice
of S:
The set S fixed in section appears in the conjectures of section through an interme-
diary such as the L-function as well as the definition of the regulator. In fact, one
has the

Proposition 18. The truth of the conjecture in section §1.4 is independent of the
choice of the set S.

Proof. We work with the version in . Suppose S is the initial set and let S ′ = S∪{p},
where p is a place of k not appearing in S. Denote by U ′, X ′, f ′,etc. the data in
section with S replaced with S ′, as well as c′(χ), r′(χ) the initial coefficient and the
multiplicity of LS′(s, χ) at s = 0 respectively. Finally, let A′(χ, f ′) be the resultant
number as seen in section. We also assume that f ′_CX = f . Let

B(χ) =
A′(χ, f ′)

A(χ, f)

We have to show that

Claim: B(χ)α = B(χα) for all α ∈ Aut(C).

As in , and the formulae in , we note that it is sufficient to solve for χ(1) = 1.
This leads us to distinguish the two cases below. Let P be a place of K lying above
p and GP ⊆ G its decomposition group.

Case-1: χ is not trivial on GP

Then we have (∵ dimC V = dimC V
∗)r(χ) = r′(χ);HomG(V

∗,CX) = HomG(V
∗,CX ′)

and R(χ, f) = R′(χ, f ′).

On the other hand, if χ is also not trivial on the inertia group IP of P, we find
that LS(s, χ) = LS′(s, χ), and so B(χ) = 1 = B(χα), which implies 2.7.4. Suppose
to the contrary, χ(IP) = 1, then c′(χ) = (1 − χ(σP))c(χ) and, as a consequence
B(χ) = (1− χ(σP))−1, so that the claim is trivially true.

13



1. Introduction

Case-2: χ(GP) = 1.

Due to (3) property mentioned at the start of this section, it is enough to assume
GP = 1, which is to say that p splits completely in the extension K/k. In this
case, LS′(s, χ) = (1−Np−s)−1LS(s, χ), so c′(χ) = c(χ) logNp. On the other hand,
r′(χ) = r(χ) + 1, and more precisely, if Ph = πOK , for π ∈ K:QU ′ ' QU ⊕Q[G] · π

QX ′ ' QX ⊕Q[G] · (P− 1
g
NGw0)

where w0 is an arbitrary Archimedean place of K, g = #S and NG =
∑

σ∈G σ ∈
Q[G].

In suitable bases, we obtain matrices for λ′ and f ′ :

M(λ′) =

(
M(λ) ∗
0 log |π|P · 1G

)
;M(f ′) =

(
M(f) ∗
0 1G

)

As V is of dimension 1, it is easily deduced that the matrix corresponding to the
endomorphism (λ′ ◦ f ′)V of HomG(V

∗,CX ′) can be put in the form :

M(λ′) =

(
M((λ ◦ f)V ) ∗

0 log |π|P

)

where detM((λ ◦ f)V ) = R(χ, f).
Finally, one finds that B(χ) = log |π|P/ logNp, a rational number which does not
depend on χ. This concludes the proof of the proposition.

1.6. Statement of Gross-Stark Conjecture
This section follows [Gro81][Ven14]

1.6.1. Gross’s p-adic regulator
Recall that the definition of Stark regulator crucially depends on the logarithmic
map λ defined in previous section. We also aim to find such a map. First, we shall
build the the theory of p-adic absolute values.

14



1. Introduction

Definition 19. For each place P of K, we can define the local absolute value
| · |P,p : K×

P → Z×
p by

|x|P,p =


1 if KP ' C

sign(x) if KP ' R

(NP)−vP(x) if P ∤ p

(NP)−vP(x)NKP/Qp if P | p

Remark 20. 1. It can be shown that the product formula holds for the local
absolute values as well. More precisely,∏

P

|x|P,p = 1 ∀ x ∈ K×

2. The local absolute values are not exactly the same as the usual absolute values.
For example, if x is a totally positive unit, then |x|P,p = 1 for all places P but
usually if |x|P = 1 for all places P, then x must be a root of unity.

The second property is a useful property to have. So, we focus our attention to
the subgroup

(K×)− := {x ∈ K× : |x|P,p = 1 ∀ P | ∞}

On this subgroup, we have the property that x is a root of unity contained in K if
and only if |x|P = 1 for all finite places P of K. [Gro81, Prop. 1.11]
The above definition can be interpretated in the following manner as well. If τ ∈ G
is the complex conjugation, then

(K×)− = {x ∈ K× : τ(x) = −x}

Next, fix the finite set S of places of K containing all the infinite places and the
places dividing p. Let US,K be the set of S-units of K and let U−

S,K = US,K ∩ (K×)×.
Let YS,K be the free abelian group on the set S and let XS,K be the subgroup of
elements of degree 0 as in the previous section. Motivated from the logarithmic map
λ : U → RY , we define our local logarithmic map

λp : US,K → QpYS,K

x 7→
∑
P∈S

logp |x|P,pP

15



1. Introduction

Due the product formula (Remark 20(1), the image of λp lies in QpXS,K . We are
interested in knowing whether the induced map λp : QpU

−
S,K → QpXS,K is injective

or not. The measure of how far the map is from being injective is quantified through
the regulator. First, define

op : U
− → X−

x 7→
∑
P∤∞

fPvP(x)P

Tensoring by Qp over Z gives the induced map

op : QpU
− → QpX

−

The map op is an isomorphism (just construct the inverse using the finiteness of the
class number of K).

Definition 21. We can define the Gross p-adic regulator via

Rp,K,S = det(λp ◦ o−1
p |QpX

−)

1.6.2. Statement of the Gross-Stark conjecture
Let k be a totally real number field and k its algebraic closure. Let E be a field of
characteristic 0 and V the finite dimensional vector space over E with an action of
Gk. Consider the representation

ρ : Gk → GL(V )

that factors through the Galois group of a finite extension K/k. Such a representa-
tion is said to be totally odd if every complex multiplication acts as −1V .

Fix a prime number p, and fix embeddings Q ↪→ C and Q ↪→ Cp. This allows us to
view χ as taking values in C or Cp. Let S be a finite set of places of k containing all
the infinite places of k. To the representation V , we have the S-depleted L-function

LS(s, ρ) =
∏
p ̸∈S

det
(
1− σpNp−s|V Ip

)−1 (1.13)

16



1. Introduction

Let S also contain all the divisors of p. Let

ω : G(k(µ2p)/k)→ (Z/2pZ)× → Z×
p

be the Teichmuller character. If α : E → Cp is an embedding, then V α denotes
the complex representation obtained by change of base. We have the following
interpolation formula:

Lp,S(ω
1−n ⊗ V α, n) = aS(V, n)

α

where aS(V, n) is obtained via the relation

LS(V
β, n) = aS(V, n)

β

with β : E → C an embedding.

The p-adic L function Lp(ω ⊗ V α, s) is non-zero if and only if V is totally odd.
Next, the Taylor expansion of LS(V β, s) and Lp,S(ω ⊗ V α, s) at s = 0 gives

• LS(V
β, s) ∼ L(V β)sr(V

β)

• Lp,S(ω ⊗ V α, s) ∼ Lp(V
α)srp(V

α)

Definition 22. Define the regulators

• R(V β) = det
(
1⊗ λ ◦ f−1|(V β ⊗ CX−)G

)
• Rp(V

α) = det
(
1⊗ λp ◦ o−1

p |(V α ⊗ CX−)G
)

It can be shown that there is an algebraic number A(V ) ∈ E× such that for all
embeddings β : E → C both r(V β) = r(V ) and L(V β) = R(V β)A(V )β.

Conjecture 23. For all embeddings α : E → Cp we have

1. rp(V α) = r(V )

2. Lp(V α) = Rp(V
α)A(V )α

This conjecture can be reformulated as

Conjecture 24. 1. ords=0LS,p(ωχ, s) = r(χ)

2. lim
s→0

LS,p(ωχ, s)/s
r(χ) =

(−1)r(χ)
∏
p∈S

χ(p)=1

fp

 hK
hk

1

|µ(K)|Q
∏
p∈S

χ(p) ̸=1

(1− χ(p))

17



2. Cohomological interpretation

The notation from this chapter onwards follows [DDP11]. So, instead of K/k we
deal with H/F defined below. Also, we consider the case dimV = 1.

Let F be a totally real field, and

χ : GF :→ Q×

be a totally odd character of the absolute Galois group of F . Let H be the cyclic
extension of F cut out by Ker(χ) (in fact more is true, H is a CM extension as well).
χ can be seen as operating on the ideals of F via χ(p) = 0 if p is ramified in H/F

and χ(p) = χ(Frob(p, H/F )) if p is unramified in H/F .
Next, fix a prime number p, and embeddings Q ↪→ C,Q ↪→ Cp and view χ as

having values in C or Cp. Let V = E(χ) with E a finite extension of Qp containing
all values of χ. Substitute V with χ. We wish to reformulate Rp(χ) cohomologically.

For sake of convenience and completeness, we will restate the problem statement
again.

Consider a finite set of places S of F containing all the infinite places. Then, the
S-depleted L-function

LS(s, χ) =
∑

gcd(a,v)=1
∀ p∈S

χ(a)Na−s =
∏
p ̸∈S

(
1− χ(p)Np−s

)−1

convergent for Re(s) > 1 and has a holomorphic continuation to all of s ∈ C for
nontrivial χ. Due to [DR80] we know of the existence of a continuous E-valued
function LS,p(χω, s) with s ∈ Zp characterised by the interpolation property at
negative integers n ≤ 0 :

LS,p(χω, n) = LS(χω
n, n)

A theorem of Siegel shows that LS(χ, n) is algebraic and using the embedding
Q ↪→ Cp we can view the values to be p-adic. In fact, the function LS,p(χω, s)

18



2. Cohomological interpretation

is meromophic on Zp and regular as long as χ 6= ω−1.
Let Sp be the set of places of F above p. We can take S to be Sp ∪ S∞ ∪ {v :

v ramified }. We can partition Sp into

R = {p | p : χ(p) = 1}, R′ = {p | p : χ(p) 6= 1}

By the useful observation we made in Theorem 10 we can deduce that r := rS(χ) =

#R. Gross conjectured that

ords=0LS,p(χω, s) = rS(χ) = r

Remark 25. If T = S\R, then

LS(χ, s) =

(∏
p∈R

1− Np−s
)
LT (χ, s)

Hence, LS(χ, s) = 0 at s = 0 with order rS(χ). By the interpolation property, the
order of vanishing of LS,p(χω, s) at s = 0 is atleast r.

For the rest of the exposition, we shall assume that rS(χ) = 1. In words, this
means there is an unique p | p such that χ(p) = 1. In our case, we have

ords=0LS,p(χω, s) ≥ 1

Next, let

Uχ :=
(
O×
H,S ⊗ E

)χ−1

:= {u ∈ O×
H,S ⊗ E : σu = χ−1(σ)u∀ σ ∈ G}

Galois equivariant form of Dirichlet’s S-unit theorem tells us that Uχ is a finite
dimensional E-vector space such that

dimE Uχ = rS(χ) = 1

Fix a vector 0 6= uχ ∈ Uχ and choose a prime P of H lying above p. This allows
us to define two E-linear maps

oP : Uχ → E, u⊗ x 7→ xordP(u)

`P : Uχ → E, u⊗ x 7→ x logp(NHP
/Qp(u))
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2. Cohomological interpretation

Definition 26. Following Greenberg, the L -invariant attached to χ is defined via
the ratio

L (χ) := − `P(uχ)
oP(uχ)

Remark 27.

The L -invariant does not depend on the choice of the vector uχ. Indeed, if u′χ is
another non-zero vector, then due to the 1-dimensionality of Uχ as a E-vector space
we have u′χ = πuχ with π ∈ E×. Thus, both the numerator and denominator have
the extra factor π which cancels out.

The L -invariant is also independent of the choice of the prime P above p. Indeed,
if P′ were another prime, then using transitivity of G on P | p we have P′ = σP for
some σ ∈ G. Consequently, oσ(P) = oP(σ

−1uχ) = oP(χ(σ)uχ) = χ(σ)oP(uχ), and
`σP(uχ) = χ(σ)`P(uχ) as well. Hence, the ratio is unaffected by the choice.

We are now ready to state Gross’s conjecture for our purposes.

Conjecture 28 (Gross). Let F be a totally real field, H a totally complex extension
of F , and χ : Gal(H/K) → C× a character of conductor n. If S = R ∪ {p} and
rS(χ) = 1, then one can show that

L′
S,p(χω, 0) = L (χ)LR(χ, 0)

To state the main theorem of DDP, we need to introduce some notation.

Definition 29.
Lan(χ, s) :=

−LS,p(χω, 1− s)
LR(χ, 0)

Lan(χ) :=
L′
S,p(χω, 0)

LR(χ, 0)
= L ′

an(χ, 1)

This definition allows to rephrase the conjecture to asking whether Lan(χ) =

L (χ). The main theorem of DDP says that

Theorem 30. Assuming that Leopoldt’s conjecture holds for F , and the assumptions

1. If |Sp| > 1, then the conjecture is true for all χ.

2. If |Sp| = 1 and furthermore

ordk=1(Lan(χ, k) + Lan(χ
−1, k)) = ordk=1Lan(χ

−1, k) (2.1)

Then, the conjecture holds for both χ and χ−1.
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2. Cohomological interpretation

2.1. Cohomological interpretation
Let

εcyc : GF → Z×
p

be the cyclotomic character. If E is a finite extension of Qp that contains the values
of χ as usual, then by E(χ) we will denote the space E on which GF acts via the
continuous action

σ · x = χ(σ)x

Similarly, E(1) is equipped by the continuous action of the cyclotomic character.
Thus, E(χ)(1) has a continuous action of χεcyc, and E(χ−1) the action via χ−1.

2.2. Local Cohomology groups
Let v be a place of F , Gv ' GFv , Iv ⊆ Gv be choice of decomposition group and
inertia group at v.

Let pE = 〈π〉 be the maximal ideal of OE. Tate’s local duality gives a perfect
pairing

〈, 〉v,n : H1(Fv,OE/πn(χ−1))×H1(Fv,OE/πn(χ)(1))→ OE/πn

Taking limit n→∞ and then tensoring with E leads to the perfect pairing

〈, 〉v : H1(Fv, E(χ−1))×H1(Fv, E(χ)(1))→ E (2.2)

Definition 31. If M is a GF -module, then the inflation-restriction sequence gives

0 H1(Gv/Iv,M
Iv) H1(Fv,M) H1(Iv,M)Gv/Iv

resIv

The unramified classes classes are exactly the classes of H1(Fv,M) that lie in the
kernel of resIv .

If χ(Gv) 6= 1, then Gv/Iv is a pro-cyclic group. Hence,

H1(Gv/Iv,OE/πn(χ−1)Iv) = Ĥ−1(Gv/Iv,OE/πn(χ−1)Iv)

= (OE/πn(χ−1)Iv)/(χ−1(v)− 1)

Thus, the quotient has bounded size independent of n. Or equivalently, if we take
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2. Cohomological interpretation

limit over n, then the limit has torsion. Consequently, tensoring with E tells us that
H1(Gv/Iv, E(χ−1)Iv) = 0 and hence there are no unramified classes.

Assume χ(Gv) = 1. Then,

1. H1(Fv, E(χ−1)) = H1(Fv, E) = Homcts(Gv, E) contains an unramified class

κunr : Gal(F unr
v /Fv)→ OE, Frobv 7→ 1

2. If v | p, then we have a ramified class, namely the restriction of the logarithm
of the cyclotomic character to Gv. In particular, we are concerned with

κcyc = logp(εcyc) ∈ H1(F,E)

3. Kummer theory gives a connecting homomorphism (which is an isomophism)

δv,n : F×
v ⊗ Z/pnZ→ H1(Fv,Z/pnZ(1))

If we let F×
v ⊗̂E := (lim←−n F

×
v ⊗ Z/pnZ)⊗Zp E, then the connecting homomor-

phism of Kummer theory becomes the isomorphism

δv : F
×
v ⊗̂E → H1(Fv, E(1))

4. We can calculate the pairing. Let u ∈ F×
v ⊗̂E, note that

• 〈κunr, δv(u)〉v = −κunr((u, F v|Fv)) = −κunr((u, F unr
v |Fv)) = −ov(u)

• This uses some calculation as can be found in [AT90][Neu13][NSW08]

〈κcyc, δv(u)〉v = −(logp ◦εcyc)((u, F v|Fv))
= −(logp ◦εcyc)(NFv/Qp(u), F v|Qp)

= − logp(NFv/Qp(u
−1))

= −`v(u)

The above observation helps us view δv(F
×
v ⊗̂E) as the orthogonal complement

to κunr under the local Tate duality.

[DDP11, see Lemma 1.3] also calculate the dimensions of the two spacesH1(Fv, E(χ)(1))
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2. Cohomological interpretation

and H1(Fv, E(χ−1)). In fact, the dimensions of both the spaces are same, given by
[Fv : Qp] χ(Gv) 6= 1, v | p

[Fv : Qp] + 1 χ(Gv) = 1, v | p

1 χ(Gv = 1), v ∤ p∞

0 otherwise

2.3. Global Cohomology groups
Recall the definition of unramified class

H1
unr(Fv, E(χ−1)) ' H1(Gv/Iv, E(χ−1)Iv)

The orthogonal complement of the space H1
unr(Fv, E(χ−1)) under the local Tate

duality is denoted by

H1
unr(Fv, E(χ)(1)) := {u ∈ H1(Fv, E(χ)(1)) : 〈κ, u〉v = 0 ∀ κ ∈ H1

unr(Fv, E(χ−1))}

Under the observation

H1
unr(Fv, E(χ−1)) =

E · κunr χ(Gv) = 1

0 otherwise

we have

H1
unr(Fv, E(χ)(1)) =

O×
v ⊗̂E χ(Gv) = 1

H1(Fv, E(χ)(1)) otherwise

Definition 32.

By H1
p (F,E(χ−1)) we denote the subgroup of H1(F,E(χ−1)) consisting of classes

unramified outside of p and arbitrary at p.

By H1
[p](F,E(χ−1)) we denote the subgroup of H1

p (F,E(χ−1)) consisting of classes
unramified outside of p and trivial at p.

The corresponding orthogonal complements under the local Tate duality are denoted
by H1

[p](F,E(χ)(1)) ⊆ H1
p (F,E(χ)(1)) ⊆ H1(F,E(χ)(1)).

The main result of this section is

23



2. Cohomological interpretation

Proposition 33. The map

δ : Uχ → H1
p (F,E(χ)(1))

induced by Kummer theory is an isomorphism. In particular, as a E-vector space,
H1

p (F,E(χ)(1)) has dimension 1.

Proof. This result can be generalised for R of size greater than 1. In that case the
dimension of the corresponding cohomology class is |R|. I will include the proof in
the final draft when I state Gross-Stark conjecture in the general setting.

If W is a subspace of H1(Fp, E(χ−1)), define

H1
W,p(F,E(χ−1)) ⊆ H1

p (F,E(χ−1))

to be the subspace consisting of classes whose image under the map resIp lies in W .
The dimension of this new subspace is also of interest to us. The following theorem
addresses this question.

Proposition 34. Suppose χ(Gp) = 1, and W ⊆ H1(Fp, E) is a subspace containing
the unramified cocycle κunr. Then,

dimE H
1
W,p(F,E(χ−1)) = dimEW − 1

In particular,
dimE H

1
p (F,E(χ−1)) = [Fp : Qp]

Proof. This result can also be easily generalised using the same arguments as used
in DDP. I will include it in the final thesis.

2.4. Formula for L invariant
Definition 35. If Wcyc is the subspace of H1(Fp, E) spanned by the classes κunr and
κcyc, define

H1
p,cyc(F,E(χ−1)) := H1

p,Wcyc
(F,E(χ−1)) (2.3)

By the previous proposition, the space H1
p,cyc(F,E(χ−1)) is 1-dimensional over E.

Thus, any non-trivial element κ in this space is of the form

resIp(κ) = xκunr + yκcyc
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for some x, y ∈ E. y 6= 0 for it contradicts the dimension when Wcyc is spanned by
just κunr. As the space is 1-dimensional, the choice of κ does not change the ratio
y/x.

By the reciprocity law of Global Class Field theory, we have

〈κ, δ(uχ)〉 =
∑
v

〈resIvκ, δv(uχ)〉v

= 〈resIpκ, δp(uχ)〉p
= x〈κunr, δp(uχ)〉p + y〈κcyc, δp(uχ)〉p
= −x · op(uχ) + y`p(uχ)

But 〈κ, δ(uχ)〉 = 0 by definition. Hence, L (χ) = −x/y.

Conjecture 36. The above observation allows us to reduce our theorem to the
following:

There exists a nontrivial class κ ∈ H1
p,cyc(F,E(χ−1)) satisfying

resIp(κ) = xκunr + yκcyc
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3. Λ-adic Hilbert modular forms

Main references are [DDP11][Shi78][Gar90]

3.1. Hilbert Modular Forms
Let F be a totally real number field of degree n = [F : Q]. The embeddings be
τ1, . . . , τn. If a ∈ OF , then a can be seen as an element of F ↪→ R via the tuple
a = (ai := τia)i.

Let ψ be a narrow ray class character modulo b with sign r ∈ Fn2 . If α ∈ OF is
relatively prime to b, we can define a character associated to ψ by

ψf : (OF/b)× → Q×
, α 7→ sign(α)rψ(〈α〉)

Fix an integer k. Let λ ∈ Cl+(F ) be an ideal class, choose a representative
fractional ideal tλ. Let GL+

2 (F ) denote the 2 × 2 matrices with elements from F

such that the determinant is totally positive (all galois conjugates are positive).
Define the level

Γλ :=

{(
a b

c d

)
∈ GL2(F ) : a, d ∈ OF , b ∈ t−1

λ d−1, c ∈ btλd, ad− bc ∈ O×
F

}

The space Mk(b, ψ) of Hilbert modular forms of level b and character ψ consists
of functions f = (fλ)λ∈Cl+(F ) with

fλ : Hn → C

such that each function fλ satisfies

fλ|γ = ψf (a)fλ
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3. Λ-adic Hilbert modular forms

for all γ ∈ Γλ where the slash operator |γ is defined to be

fλ|γ(z) := det(γ)k/2(cz + d)−kfλ(γz)

(cz + d)k :=
n∏
i=1

(cizi + di)
k

det(γ)k/2 :=
n∏
i=1

det(γi)k/2

γz :=

(
a1z1 + b1
c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
The function f ∈Mk(b, ψ) must also satisfy

S(m)f = ψ(m)f ∀ gcd(m, b) = 1 (3.1)

It can be shown that fλ has a Fourier expansion

fλ(z) = aλ(0) +
∑
b∈tλ
b>>0

aλ(b) exp(2πiTrF/Q(x)) (3.2)

Definition 37. The coefficients aλ(b) are called unnormalised Fourier coefficients
of f . We define the normalised Fourier coefficients c(m, f), c(0, f) to be

c(m, f) := aλ(b)Nt−k/2λ , c(0, f) := aλ(0)Nt−k/2λ

where an integral ideal m = bt−1
λ for a totally positive element b and an unique λ.

Remark 38. Note that the definition does not depend on the choice of b. Indeed, any
other choice of b would differ by a totally positive unit ε, and modularity condition
would imply fλ(εz)Nεk/2 = fλ(z).

Definition 39. If for each γ ∈ GL2(F )
+ and λ ∈ Cl+(F ), the function f |γ has

constant term 0, then we say f is a cusp form. The space of cusp forms of weight
k, level b and character ψ is denoted by Sk(b, ψ).

3.2. Eisenstein series
A standard example of Hilbert modular forms come from Eisenstein series associated
to two narrow ray class characters.
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3. Λ-adic Hilbert modular forms

Let a, b be two integral ideals of F , η, ψ be two narrow ray class characters modulo
a, b respectively. Also, suppose the signs of η, ψ are q, r satisfying

q + r ≡ (k, k, . . . , k) mod 2Zn

Then it can be shown that [DDP11, Proposition 2.1][Shi78, Proposition 3.4] there
exists Ek(η, ψ) ∈Mk(ab, ηψ) such that

c(m,Ek(η, ψ)) =
∑
r|m

η(m/r)ψ(r)Nrk−1 (3.3)

In fact, the constant term of the Eisenstein series can be computed explicitly[DDP11,
Proposition 2.1], as seen in the following

cλ(0, Ek(η, ψ)) =



2−nη−1(tλ)LS(ψη
−1, 1− k) k > 1, a = 1,

0 k > 1, a 6= 1,

2−nη−1(tλ)LS(ψη
−1, 0) k = 1, a = 1, b 6= 1,

2−nψ−1(tλ)LS(ηψ
−1, 0) k = 1, a 6= 1, b = 1,

2−n(η−1(tλ)LS(ψη
−1, 0) + ψ−1(tλ)LS(ηψ

−1, 0)) k = 1, a = 1, b = 1,

0 k = 1, a, b 6= 1

3.3. Construction of cusp form
Definition 40. Whenever L(ψ, 1− k) 6= 0, the normalised Eisenstein series can be
defined as

Gk(1, ψ) :=
2n

L(ψ, 1− k)
Ek(1, ψ) (3.4)

Using the values of Ek(1, ψ) as in the last proposition, we observe that cλ(Gk(1, ψ), 0) =

1.
Recall that χ : GF → Q× is a character of conductor n and χ(p) = 1. Let

nR = lcm

n,
∏

q|p,q ̸=p

q

 , nS = lcm

n, p
∏

q|p,q ̸=p

q


We will view χ as a character χR(resp. χS = χω1−k) with modulus nR(resp. nS).
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3. Λ-adic Hilbert modular forms

We will concern ourselves with the modular form

Pk := E1(1, χR)Gk−1(1, ω
1−k) ∈Mk(nS, χω

1−k) (3.5)

The modular form Gk−1(1, ω
1−k) makes sense as can be seen from the functional

equation of LS(χ, s).
[Wil86]Every modular form in Mk(nS, χω

1−k) can be written uniquely as a linear
combination of a cusp form and the Eisenstein series Ek(η, ψ) with the pair (η, ψ)

running over the set J of characters with modulus mη,mψ respectively satisfying

mηmψ = nS, ηψ = χω1−k (3.6)

More concretely,

Pk = (cusp form) +
∑

(η,ψ)∈J

ak(η, ψ)Ek(η, ψ) (3.7)

As we are interested in constructing a cusp form, we would like to remove the
contribution from Eisenstein series in the above expression. This is achieved with
the help of an appropriate Hecke operator as will be developed later in this section.
We are interested in the coefficients ak(χ, ω1−k) and ak(1, χω

1−k) for it turns out
that their values are ratios of the classical L-functions and p-adic L-functions. We
will record this fact in the following

Proposition 41. [DDP11, Proposition 2.6, 2.7] If k ∈ Z≥2, then

ak(1, χω
1−k) =

LR(χ, 0)

LS,p(χω, 1− k)
= −Lan(χ, k)

−1

If k ∈ Z>2 and p is the unique prime above p (|Sp| = 1), then

ak(χ, ω
1−k) =

LR(χ
−1, 0)

LS,p(χ−1, ω, 1− k)
〈Nn〉k−1 = −Lan(χ

−1, k)−1〈Nn〉k−1

Proof. It follows simply by comparing coefficients on both sides of the equation

Pk = (cusp form) +
∑

(η,ψ)∈J

ak(η, ψ)Ek(η, ψ)

and using the linear independence of characters of the narrow ray class group Cl+(F ).
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3. Λ-adic Hilbert modular forms

If q is a prime ideal, we denote by Tq, Uq the Hecke operators. They act on the
Eisenstein series in the following manner

TqEk(η, ψ) = (η(q) + ψ(q)(Nq)k−1)Ek(η, ψ) q ∤ nS
UqEk(η, ψ) = (η(q) + ψ(q)(Nq)k−1)Ek(η, ψ) q | nS

= η(q)Ek(η, ψ) q ∤ mη

= ψ(q)(Nq)k−1Ek(η, ψ) q | mη

Definition 42. Remember that E/Qp is a finite extension containing the values of
χ. Consider the OE-submodule Mk(nS, χω

1−k;OE) ⊆ Mk(nS, χω
1−k) consisting of

modular forms with the normalised Fourier coefficients lying in the ring OE. The
ordinary projector or Hida’s idempotent [Hid93] defined as

e := lim
r→∞

∏
q|p

Uq

r!

(3.8)

is an idempotent in End(Mk(nS, χω
1−k;OE)). We can extend it to Mk(nS, χω

1−k;E)

E-linearly using the fact that

Mk(nS, χω
1−k;OE)⊗OE

E =Mk(nS, χω
1−k;E)

It is easy to see that eEk(η, ψ) = Ek(η, ψ) if gcd(p,mη) = 1 and 0 otherwise. This
allows us to formulate

Proposition 43. [DDP11, Proposition 2.8] If P 0
k = ePk, then

P 0 = ( an ordinary cusp form) +
∑

(η,ψ)∈J0

ak(η, ψ)Ek(η, ψ)

where (η, ψ) runs through the set J0 consisting of the pairs (η, ψ) such that

mηmψ = nS, ηψ = χω1−k, gcd(p,mη) = 1 (3.9)

Lemma 44. [DDP11, Lemma 2.9]

1. For each (η, ψ) ∈ J0 with η 6∈ {1, χ}, we have a Hecke operator T(η,ψ) such
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3. Λ-adic Hilbert modular forms

that
T(η,ψ)Ek(η, ψ) = 0, T(η,ψ)E1(1, χS) = 1

2. If the set R = S−{p} contains a prime above p, then there is a Hecke operator
T(χ,ω1−k) satisfying

T(χ,ω1−k)Ek(χ, ω
1−k) = 0, T(χ,ω1−k)E1(1, χS) = 1

If F has prime above p other than p, then set

uk :=
1

1 + Lan(χ, k)
, wk :=

Lan(χ, k)

1 + Lan(χ, k)
, vk := 0

If p is the unique prime in F above p, then set

uk :=
Lan(χ, k)

−1

ck
, wk :=

1

ck
, vk := 0

Lan(χ
−1, k)−1〈Nn〉k−1

ck

where
ck = Lan(χ, k)

−1 + Lan(χ
−1, k)−1〈Nn〉k−1 + 1

As a direct corollary to the lemma and the notations above, we have

Theorem 45. [DDP11, Corollary 2.10] If Hk := ukEk(1, χω
1−k) + vkEk(χ, ω

1−k) +

wkP
0
k , then the modular form

Fk :=

∏
(η,ψ)

T(η,ψ)

Hk

is a cusp form belonging to Sk(nS, χω
1−k). The product is over J0 with η 6= 1 if F

has primes other than p above p and the product is over J0 with η 6= 1, χ if p is the
only prime in F above p.

3.4. Λ-adic Eisenstein series
Recall that the Iwasawa algebra Λ ' OE[[T ]] is topologically generated over OE by
the functions of the form k 7→ uk with u ∈ 1 + 2pZp. For each k ∈ Zp we have a
homomorphism

νk : Λ→ OE, T 7→ uk−1 − 1
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3. Λ-adic Hilbert modular forms

called the specialisation to weight k. Λ(k) will denote the localisation of Λ at Kerν1,
and sometimes we will view νk as a homomorphism from Λ(1) → E.

Definition 46. A family F = {c(m,F ), cλ(0,F ),m integral ideals of F, λ ∈ Cl+(F )}
is a Λ-adic form of level n and character χ if
for all finitely many k ≥ 2, ∃ fk ∈ Mk(nS, χω

1−k;E) such that νk(c(m,F )) =

c(m, fk), nuk(cλ(,F )) = cλ(0, fk) is called a Λ-adic modular form.
Futher, if νk(F ) is in Sk(nS, χω

1−k) for all but finitely many k ≥ 2, then we say F

is a Λ-adic cusp form.
The space of Λ-adic modular forms (resp. cusp forms) of level n and character χ
is denoted by M(n, χ) (resp. S(n, χ)). By extension of scalars, the elements of
M(n, χ) ⊗Λ FΛ (resp. S(n, χ) ⊗Λ FΛ) are also called Λ-adic modular forms (resp.
cusp forms).

The usual Hecke operators Tq, Uq commute with specialisation. Thus, the action
of these operators on the spaces Mk(nS, χω

1−k), Sk(nS, χω
1−k) give rise to action in

the space M(n, χ) that preserves S(n, χ). We also define the ordinary subspaces

M0(n, χ) := eM(n, χ), S0(n, χ) := eS(n, χ)

It is well known that the ordinary subspaces are finitely generated torsion-free Λ-
modules. Let

T̃ ⊆ End(M0(n, χ)), T ⊆ End(S0(n, χ))

be the Λ algebras generated by the Hecke operators Tq, Uq.
By extension of scalars, the elements ofM0(n, χ)⊗Λ FΛ (resp. S0(n, χ)⊗Λ FΛ) are
also called Λ-adic modular forms (resp. cusp forms).

Proposition 47. [DDP11, Proposition 3.2] If η, ψ is a pair of narrow ray class
characters modulo mη,mψ respectively, such that ηψ is totally odd. Then, there
exists a Λ-adic modular form

E ∈M(mηmψ, ηψ)⊗Λ FΛ

such that
νk(E (η, ψ)) = Ek(η, ψω

1−k)
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3. Λ-adic Hilbert modular forms

Proof.

c(m, Ek(η, ψω
1−k)) =

∑
r|m

η(m/r)ψ(r)ω1−k(r)Nrk−1

=
∑
r|m

gcd(r,p)=1

η(m/r)ψ(r)〈Nr〉k−1

Moreover, if we choose s ∈ Zp such that 〈Nr〉 = us. Then,

νk((1 + T )s) = 〈Nr〉k−1

Thus, the terms on the right hand side can be seen as specialisation of elements in
Λ. Moreover, the LS,p(η−1ψω, 1−k) can also be seen as specialisation of an element
of Λ. Hence, Ek(η, ψω1−k) can be seen as a specialisation of an appropriate Λ-adic
form. This completes the proof.

Definition 48 (Shifted weight forms). A family M ′ = {c(m,F ), cλ(0,F ),m inte-
gral ideals of F, λ ∈ Cl+(F )} is a Λ-adic form of level n and character χ if
for all finitely many k ≥ 2, ∃ fk ∈ Mk−1(nS, χω

1−k;E) such that νk(c(m,F )) =

c(m, fk), νk(cλ(,F )) = cλ(0, fk) is called a Λ-adic modular form.

Proposition 49. There exists an element G ∈M′ ⊗Λ FΛ such that

νk(G ) = Gk−1(1, ω
1−k)

Furthermore, if Leopoldt’s conjecture holds for F , then the form G ∈ M′ ⊗Λ Λ(1),
and

ν1(G ) = 1

Proof. The existence of G follows by defining it via

νk(c(m,G )) = 2nζp(F, 2− k)−1
∑
r|m

gcd(r,p)=1

η(m/r)ψ(r)〈Nr〉k−1, νk(cλ(0,G )) = 1

If Leopoldt’s conjecture holds, then by a result of Colmez cite Colmez, the p-adic
zeta-function ζp(F, s) has a pole at s = 1 and thus ζp(F, 2− k)−1 is regular at s = 1

and vanishes at that point. This completes the proof.
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3. Λ-adic Hilbert modular forms

3.5. Λ-adic cusp form
Very naturally, we want to know if our classical modular forms Pk, P 0

k , Hk and the
cusp form Fk can be interpolated p-adically. This is where the slightly ad-hoc
condition in the hypothesis comes in handy.

Proposition 50. [DDP11, Proposition 3.4, Lemma 3.5] Suppose Leopoldt’s conjec-
ture holds for F , and

ordk=1(Lan(χ, k) + Lan(χ
−1, k)) = ordk=1Lan(χ

−1, k)

Then there exist Λ-adic forms P ∈M(n, χ)⊗Λ(1),P
0,H ∈M0(n, χ)⊗Λ(1),F ∈

S0(n, χ)⊗ Λ(1) such that for all k ≥ 2

νk(P) = Pk, νk(P
0) = P 0, νk(H ) = Hk, νk(F ) = Fk

In particular, the weight 1 specialisations are

ν1(P) = ν1(P
0) = E1(1, χR), ν1(H ) = E1(1, χS),

ν1(F ) = tE1(1, χS) for some t ∈ E×
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4. Galois representations

The eigenform H determines a Λ(1) homomorphism

φ1 : T̃⊗ Λ(1) → E, T 7→ ν1(c(OF , TH ))

which sends a Hecke operator to its eigenvalue on ν1(H ) = E1(1, χS). The map
φ1 can actually be seen as a map from T⊗Λ(1) → E as there is a Hecke operator T
such that TH = F and ν1(F ) = tE1(1, χS). Let T(1) be the localisation of T⊗Λ(1)

at Ker(φ1). T is finitely generated as Λ-algebra and Λ(1) is Noetherian, so T⊗ Λ(1)

is Noetherian and so is T(1). Moreover, T(1) is reduced [DK23]. Therefore, the total
ring of fractions F(1) of T(1) is isomorphic to a product of fields

F(1) = F1 × · · · × Ft

where each Fi is a finite extension of FΛ. Fix a factor F := Fi. We write Tq and
Uq for the images of the corresponding Hecke operators in Fj under the projection
map F(1) → F .

Recall the cyclotomic character

εcyc : GF → Z×
p

satisfying
εcyc(Frobq) = Nq if q ∤ p

We can define the Λ-adic cyclotomic character

εcyc : GF → Z×
p

by
εcyc(Frobq)(k) = 〈Nq〉k−1
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4. Galois representations

4.1. Galois representation attached to ordinary
eigenform

A theorem of Wiles says that

Theorem 51. [DDP11, Lemma 4.1] There exist a continuous irreducible Galois
representation

ρ : GF → GL2(F)

such that

1. The representation ρ is unramified at at all primes q outside S, and the
characteristic polynomial of ρ(Frobq) is given by

x2 − Tqx+ χ(q)〈Nq〉k−1

In particular, det ρ = χεcyc

2. The represenation ρ is odd, i.e. the complex multiplication acts as −1.

3. For each q | p, let Gq denote the decomposition group at q. Then,

ρ|Gq =

(
χεcycη

−1
q ?

0 ηq

)

where ηq is the unramified character of Gq satisfying

ηq(Frobq) = Uq

Let V ne the vector space associated to ρ. For a choice of basis of V , we can
represent ρ as

ρ(σ) =

(
a(σ) b(σ)

c(σ) d(σ)

)
with a, b, c, d : GF → F . Let R denote the image of T(1) under the projection map
F(1) 7→ F . Fix a choice of complex conjugation δ ∈ GF . Since ρ is totally odd, we
can find a basis of V such that

ρ(δ) =

(
1 0

0 −1

)
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We fix the basis once and for all. For x ∈ R, let x ∈ E be its reduction modulo the
maximal ideal m of R.

Theorem 52. [DDP11, Theorem 4.2] The representation ρ has the following prop-
erties:

1. For all σ ∈ GF , the elements a(σ), d(σ) ∈ R×, and a(σ) = 1, d(σ) = χ(σ). In
particular,

φ1 ◦ a = 1, φ1 ◦ d = χ

2. The matrix entry b does not vanish identically on the decomposition group Gp

at p.

4.2. 1 + ε specialisation
Let ν1+ϵ : Λ(1) 7→ Ẽ := E[ε]/(ε2) be the map f 7→ f(1) + f ′(1)ε.

Recall that φ(1)(Tq) = ν1(c(q, TqH )) = TqH1 = TqE1(1, χS) = 1 + χS(q) for
q 6= p. The observation is that H1+ϵ = ν1+ϵ(H ) can also be written as sum of two
characters that lift 1, χ.

Definition 53. Let ψ1 : GF → Ẽ be a character unramified outside p and defined
by

ψ1(q) = 1 + v1κcyc(q)ε ∀ q ∤ p

ψ1(q) = 1 q | p

Let ψ2 : GF → Ẽ be a character unramified outside S and defined by

ψ2(q) = χ(q)(1 + u1κcyc(q)ε ∀ q ∤ p

ψ2(q) = 0 q ∈ S

Theorem 54. [DDP11, Proposition 3.6] The Fourier coefficients of H1+ϵ satisfy

1. c(1, H1+ϵ) = 1

2. c(q, H1+ϵ) = ψ1(q) + ψ2(q) if q 6= p

3. c(p, H1+ϵ) = 1 + w′
1(ε)
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And, H1+ϵ is a simultaneuous eigenform for the Hecke operators Tq for q 6∈ S and
Uq for q ∈ S. The eigenvalues are given by the above calculated coefficients.

This lets us define a Λ(1) homomorphism

φ1+ϵ : T̃⊗ Λ(1) → Ẽ, T 7→ ν1+ϵ(c(OF , TH ))

In fact, φ1+ϵ factors through the quotient T ⊗ Λ(1) of T̃ ⊗ Λ(1) as there is a Hecke
operator T such that TH = F .

Proof. We shall prove this theorem in the case when p is not the only prime in H

above p (the other case is done in [DDP11, Proposition 3.6]). Let m be an integral
ideal of OF and write m = n〈p〉 with gcd(n, 〈p〉) = 1. Note that

c(m, E1+ϵ(1, χ)) =
∑
r|n

χ(r)(1 + εκcyc(r)) (4.1)

χ(r) = χS(r) if p ∤ r (4.2)
χ(r) = 0 if p | r (4.3)

Therefore,

c(m, E1(1, χ))− c(m, E1(1, χS)) =
∑
r|m

(χ(r)− χS(r)) = ordp(n)
∑
r|n

χ(r) (4.4)

Using the same arguments as in [DDP11] we can show that

c(m, H1+ϵ) =

∑
r|n

ψ1(n/r)ψ2(r)

 (1 + w′
1ε)

ordp(n)

The result follows from this.

As w(k) = u(k)Lan(χ, k) we have w′
1 = u1Lan(χ). Thus, we have the following

Theorem 55. [DDP11, Theorem 3.7] Assuming that Leopoldt’s conjecture holds for
F , and the assumptions

1. If |Sp| > 1, then the conjecture is true for all χ.

2. If |Sp| = 1 and furthermore

ordk=1(Lan(χ, k) + Lan(χ
−1, k)) = ordk=1Lan(χ

−1, k) (4.5)
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4. Galois representations

Then there exists a Λ(1)-homomorphism

φ1+ϵ : T(1) → Ẽ

such that

φ1+ϵ(Tq) = ψ1(q) + ψ2(q) q 6∈ S (4.6)
φ1+ϵ(Uq) = ψ1(q) q ∈ R (4.7)
φ1+ϵ(Up) = 1 + u1Lan(χ)ε (4.8)

4.3. Construction of cocycle
Recall that for each quotient Fi of F(1), we have constructed a Galois representation

ρi : GF → GL2(Fi)

The product of these representations give us a Galois representation

ρ(1) : GF → GL2(F(1))

The main properties of the Galois representation ρ := ρ(1) is recorded in the
following theorem:

Theorem 56. [DDP11, Lemma 4.3, Theorem 4.4]

1. For the chosen complex conjugation δ, we have

ρ(δ) =

(
1 0

0 −1

)

2. For all σ ∈ GF , the entries a(σ) and d(σ) belong to T×
(1), and

φ1+ϵ ◦ a = ψ1 (4.9)
φ1+ϵ ◦ d = ψ2 (4.10)

3. Let ψ1 = 1 + ψ′ε and define a′p ∈ E by

φ1+ϵ(Up) = 1 + a′pε
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4. Galois representations

Then, there exists a cohomology class κ ∈ H1
p (F,E(χ−1)) such that

resIp = −a′pκunr + κcyc − resIp(ψ′)

Using this theorem, we can complete the proof of the conjecture. Using the last
two theorems, we have ψ′

1 = v1κcyc and a′p = u1Lan(χ), and hence obtain a class
κ ∈ H1

p (F,E(χ−1)) such that

resIp = −a′pκunr + κcyc − resIp(ψ′)

= −u1Lan(χ)κunr + κcyc(1− v1)
= u1(−Lan(χ)κunr + κcyc)

Since u1 6= 0 due the hypothesis, we can replace κ by κ/u1. This gives a cohomology
class κ ∈ H1

p (F,E(χ−1)) such that

resIp(κ) = −Lan(χ)κunr + κcyc

If we replace by χ−1, then the roles of b and c are reversed and this completes the
proof.
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5. Work of Dasgupta-Kakde-Ventullo
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6. Stark’s conjectures
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A. Dedekind Zeta Function

Let k be a number field, S a finite set of places of k containing the infinite places
S∞ of k. Then, define the Dedekind zeta function for Re(s) > 1 by

ζk(s) = ζk,S∞(s) =
∏
p ̸∈S∞

(
1− Np−s

)−1
=

∑
0 ̸=a⊴Ok

1

Nas
(A.1)

and more generally

ζk,S(s) =
∏
p ̸∈S

(
1− Np−s

)−1
=

∑
0 ̸=a⊴Ok

gcd(a,p)=1 ∀ p∈S

1

Nas
(A.2)

The function above can be meromorphically continued to all of s ∈ C. The
functional equation is discussed in Appendix F.
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B. Abelian L-functions

References for this section is [Tat84, §1], [Mar77].
Let k be a number field, S a finite set of places of k containing the infinite places

S∞ of k. Let χ be a complex valued function on the ideals of the ring of integers of
k. Define the L-function formally by

L(s, χ) =
∏
p ̸∈S∞

(
1− χ(p)Np−s

)−1
=

∑
0 ̸=a⊴Ok

χ(a)

Nas
(B.1)

If χ satisfies the asymptotic condition χ(a) = O(Naσ) for σ ∈ R, then L(s, χ)

converges for Re(s) > 1 + σ.
For example, when k = Q, we have the Dirichlet characters χ : (Z/fZ)× → C×

for f ∈ Z≥2. The character can be extended to all of Z by letting χ(a) = 0 if
gcd(a, f) 6= 1. For a general k, fix an integral ideal f of k and consider the exact
sequence

0 O×
f k×f If Cf 0

where
O×

f = {x ∈ O×
k : x ≡ 1 mod f}

k×f = {x ∈ k× : x ≡ 1 mod f}

If = {a ∈ I : a ≡ 1 mod f}

and Cf the quotient of If by the principal ideals generated by elements of k×f . We
want to get a character of If through a character of Cf

For k = Q, we have Cf = (Z/fZ)×/{±1} which does not really correspond to the
Dirichlet characters we started with. We thus have to take into consideration the
question of sign: if T is a set of real places of k, we denote by k×f,T (resp. O×

f,T ) the
elements of k×f (resp. O×

f ) that are positive for all places of T . Let Cf,T denote the
quotient of If by the image of k×f,T . This is a finite group. To summarise, we have
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B. Abelian L-functions

the following commutative diagram whose rows and columns are exact:

0

0 O×
T k×T I CT 0

0 O×
f,T k×f,T If Cf,T 0

0 0 0 (O/f)×/Im(O×
T )

0

A homomorphism χ : Cf,T → C× is seen as a function on I by letting χ(a) = 0 if
a is not coprime to f. We thus have

L(s, χ) :=
∏
p∤f

(
1− χ(p)Np−s

)−1

The above product converges for Re(s) > 1.
We say that χ : CfT → C× is primitive (where fT is the conductor of χ), if for all

f ′|f and T ′ ⊆ T , there exists a χ′ such that the following diagram commutes:

CfT Cf ′
T ′

C×

χ χ′

implying f ′ = f, T ′ = T . By abuse of language, from now on we say L(s, χ) is
primitive if χ is. Consider a function L(s, χ) non-primitive if it removes a few Euler
factors.

We know how to analytically continue L(s, χ) to the entire complex plane with a
functional equation, cf. Appendix F. If χ = 1, L(s, χ) is equal to ζK or one of ζk,S
depending on whether f = 1 or not. If χ 6= 1, we know that L(s, χ) is holomorphic
and L(1, χ) 6= 0.

In terms of ideles The χs constructed correspond to continuous homomorphisms
A×
k → S1 of finite order and trivial on principal ideals of k×. In effect, an idele

(xv) ∈ A×
k corresponds to an ideal If generated by the components xp for p | f .
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B. Abelian L-functions

We are not going to, in these notes, concern ourselves with the more general quasi-
characters of A×

k .
The theory of ray class fields establishes, for all pair (f, T ) as before, the existence

of an unique abelian extension Kf,T of k- namely ray class field f - such that the
following three conditions are satisfied:

1. A prime ideal p of k ramifies in Kf,T if and only if p | f .

Notation: If K/k is an abelian extension with a finite Galois group G, p a
place of k that does not ramify in K/k and P a place of K that divides p,

then we note that
(

p

K/k

)
is an unique element of GP ⊆ G (see below) whose

reduction modulo P is the automorphism x 7→ xNp on the residue field of P.
As G is abelian, the above depends only on p.

2. The map p 7→
(

p

Kf,T/k

)
induces an isomorphism-namely the Artin reci-

procity :
ψf : Cf,T

∼−→ Gal(Kf,T/k)

3. The norm NKf,T /ka of each ideal a 6= 0 from Kf,T prime to f is a principal
ideal generated by an element of k×f,T .

Moreover, for each finite abelian extension K/k, the Galois group G, there exists
a pair (f, T ) chosen minimally (called the conductor of ) K/k such that

1. K ⊆ Kf,T ;

2. The surjection ψK/k : Cf,T
ψf−→ Gal(Kf,T/k) → G is induced from the map

p 7→
(

p

K/k

)
;

3. The kernel kerψK/k forms the class of representatives of the norms of the ideals
of K.

By Ĝ we denote the characters (of dimension 1) of the group G. Thanks to ψK/k,
the elements of Ĝ can be interpreted as a character of the type envisaged in earlier
section. The conductor of χ ∈ Ĝ is then that of the fixed field of kerχ ⊆ G. By
writing primitive functions everywhere, we prove the following decomposition ([see
CF10, p. 217]; [Wei95, pp. XIII–10]):

ζK(s) =
∏
χ∈Ĝ

L(s, χ) = ζK(s)
∏
χ ̸=1

L(s, χ) (B.2)
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C. Linear representations of finite
groups

The reference for this section is [Ser77]
Suppose G is a group of finite order g and E a field of characteristic 0. An E-linear

representation of G is a homomorphism ρ : G→ GL(V ), for a vector space V over
E. This amounts to providing V with an E[G]-module structure. We can therefore
simply talk about the representation V of G.

The character of the representation ρ is a function χ = χρ : G → E, such that
the trace equals that of action of the automorphism ρ(x) (x ∈ G) on E. This is
a class function (i.e., χ(xyx−1) = χ(y) ∀ x, y ∈ G) with χ(1) = dimV . It takes
its values on a cyclotomic extension of Q contained in E. We denote by a 7→ a∗

the automorphism of the cyclotomic extension of Q induced by the substitution
ζ 7→ ζ−1 of roots of unity. For E ⊆ C, we find that a∗ = ā (complex conjugation).
Likewise, we write χ∗ (or χ̄, if E ⊆ C) for the character obtained by conjugating the
values of χ. Two representations of G are isomorphic if and only if they have the
same character. This follows from the orthogonality relations between irreducible
characters of G (= characters of representations with no proper G-stable subspace),
relative to the following scalar product :

〈χ1, χ2〉G =
1

g

∑
σ∈G

χ1(σ)χ
∗
2(σ) =

1

g

∑
σ∈G

χ1(σ)χ2(σ
−1)

We note that 1G : G→ E is just the trivial character corresponding to the dimension
of dimension 1. A virtual character of G in E is a combination of Z-linear characters
of G attached to the representations of G in E.

Properties of 〈·, ·〉G
Here, the arguments of the scalar product will be that of virtual characters.

1. 〈χ1, χ2〉G ∈ Z

2. 〈χ1 + χ2, χ3〉G = 〈χ1, χ3〉G + 〈χ2, χ3〉G
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C. Linear representations of finite groups

〈χ1, χ2〉G = 〈χ2, χ1〉G = 〈χ1χ
∗
2, 1G〉G

3. Frobenius Reciprocity

Suppose H is a subgroup of G of order h; ψ a virtual character of H and χ a
virtual character of G. So,

〈ψ, χ|H〉H = 〈IndGHψ, χ〉G

Here, for σ ∈ G, IndGHψ(σ) =
1

h

∑
τ∈G,τ−1στ∈H

ψ(τ−1στ)

It is the function induced on G by ψ. If ψ is the character of the representation
H → GL(W ), then Indψ is that of the induced representation E[G]⊗E[H] W

of G.

Given an E[G]-module V and a subgroup H of G, we let V H = {x ∈ V : σx =

x ∀σ ∈ H}. If W is also an E[G]-module, the action of G on V ⊗E W is given
by σ(x ⊗ y) = σx ⊗ σy and on HomE(V,W ) by (σf)(x) = σ(f(σ−1x)) so that
HomE[G](V,W ) = HomE(V,W )G. If V (resp. W) is a representation of G over
E of the character χ (resp. ψ), then χψ is a character of V ⊗E W while the
one of HomE(V,W ) is χ∗ψ. In fact, we have V ⊗E W ' HomE(V

∗,W ) where
V ∗ = HomE(V,E) is the dual of V . According to what we have said, the conjugate
character χ∗ of the character χ is attached to the action of G on V .

From now onwards, the group G given will be the Galois group of the finite
extension K/k of global fields. We will always assume the action of G is on the left.
However, we sometimes write aσ instead of σa ( for σ ∈ G, a ∈ K). In these cases,
the reader should be accustomed to the formula aστ = (atau)σ for σ, τ ∈ G, a ∈ K.

If w is a place of K, Gw is used to denote the decomposition group of w with
respect to K/k, i.e., Gw = {σ ∈ G : σw = w}. If w is non-archimedean, Iw is used
to denote the inertia group of w, formed by the elements of Gw that induces trivial
automorphism on the residual extension. So, if v is the restriction of w in k, the
Galois group of the residual extension of w/v is identified with Gw/Iw and one notes
that σw ∈ Gw/Iw is the Frobenius automorphism (elevating to a power of Nv on
the residue field of w). σw generates Gw/Iw.

If w is archimedean, we sometimes write σw for the unique generator of Gw. In
fact, in the case Gw is of order 2 or 1 depending on whether w is complex extension
of a real place or not.
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D. Definition and properties of Artin
L-functions

Suppose K/k is a finite Galois extension of number fields with Galois group G. Let
χ : G → C be a character of a complex representation G → GL(V ). With the
notations as in the previous section, for each place P of K, the element σP ∈ GP/IP

acts on V IP . Note that, for Re(s) > 1,

L(s, V ) =
∏
p

det(1− σPNp−s|V IP)−1 (D.1)

where p denotes a finite place of k and for each p, P is a place of K dividing p

(arbitrarily chosen). The σP given are conjugates of each other, thus the value
of the ”characteristic polynomial” of σP appearing as a member in the product is
independent of the choice of P.

The same argument shows that L(s, V ) remains unchanged if change V by an
isomorphic representation. We can therefore write L(s, χ) without ambiguity instead
of L(s, V ). In fact, here is an explicit formula due to Artin which depends only on
χ :

logL(s, χ) =
∑
p

∞∑
n=1

χ(σnP)

n ·Npns
(D.2)

where χ(σnP) =
1

|IP|
∑
τ∈σn

P

χ(τ)

Formal properties:
Once we have shown analytic continuation of L(s, χ), the following properties

become valid for all s ∈ C.

1. Additivity
L(s, χ1 + χ2) = L(s, χ1) + L(s, χ2)

2. Induction
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D. Definition and properties of Artin L-functions

K

k′

k

H
For a subgroup H of G and a character χ of H, denote by
Indχ the character of G induced from χ. So,

L(s, IndGHχ) = L(s, χ)

3. Inflation

K

k′

k

H

G′

For a quotient G′ = G/H where H is a distinct subgroup
of G and χ a character of G′, denote by Inflχ the character
G→ G/H

χ−→ C. So,

L(s, InflGG/Hχ) = L(s, χ)

4. If χ(1) = 1, that is to say that V is of dimension 1, the homomorphism
χ : G→ C× factorises through the abelianisation Gab of G.
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E. A theorem of Brauer and Artin’s
conjecture

A character of G is termed monomial if it is induced by a character of degree 1 of a
subgroup of G. The theorem of Brauer affirms that all characters of G are integral
linear combination of irreducible monomial characters.

Thanks to our discussion in last section, we can deduce that each Artin L-function
can be written in the form ∏

i

L(s, ψi)
ni

with ni ∈ Z and ψi is a character of degree ψi(1) = 1 of a suitable subgroup Hi of
G. On applying the induction property, we can pass to a quotient Hi of kerψi, so
that ψi becomes a character of cyclic group.

Let χ be a character of a complex representation of G. One cannot always impose
on the integers ni to be positive. Nevertheless, this decomposition tells us that
L(s, χ) has an analytic continuation to a meromorphic function defined on the entire
complex plane.

The conjecture due to Artin says that L(s, χ) is an entire function, if χ does not
contain the trivial character 1G ([Mar77, pp. I–5]).
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F. Functional equation

The main references for this section is [Wei95][God95a][God95b]
Let χ be a character of a complex representation of G = Gal(K/k).
To begin, complete L(s, χ) with the gamma factors corresponding to the infinite

places of k. Let
ΓR(s) = π−s/2Γ(

s

2
)

ΓC(s) = ΓR(s)ΓR(s+ 1) = 2 · (2π)−sΓ(s)

For each infinite place v of k, choose a place w of K lying above v. If Gw has order
2 (cf. 1.4.4), let χ− be a non-trivial character. In any case, put χ+ = ⊮Gw and write

χ|Gw = n+(w)χ+ + n−(w)χ−

So we have n+(w) = dimV and n−(w) = codimV Gw . Using this decomposition, the
local factor LV does not depend on our choice of w, and is defined by the additivity

from the formulas :


LV (s, χ+) = ΓC(s) if V is complex
LV (s, χ+) = ΓR(s) if V is real
LV (s, χ−) = ΓR(s+ 1) if V is real

If r2 is the number of complex places of k, we set

a1 = a1(χ) =
∑

v real dimV Gw

a2 = a2(χ) =
∑

v|∞ codimV Gw =
∑

v real codimV Gw

n = [k : Q] = 1
χ(1)

(a1(χ) + a2(χ) + 2r2χ(1))

More explicitly,

∏
v|∞

LV (s, χ) = 2r2χ(1)(1−s)p−
a2
2
− s

2
nχ(1)Γ(s)r2χ(1)Γ(s/2)a1Γ

(
s+ 1

2

)a2
(F.1)

Note that we have ai(χ) = ai(χ) for i = 1, 2, . . .
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F. Functional equation

If p is a finite place of k, choose a place P of K such that P|p. If IP = G0 ⊇
G1 ⊇ G2 ⊇ · · · be the sequence of ramification groups of P/p ([Ser79, ch. IV]). We
denote by gi the cardinality of Gi and put

f(χ, p) =
∞∑
i=0

gi
g0

codimV Gi (F.2)

This number does not depend on the choice of P and we can show that it is a
rational integer ([Ser79, see VI-2]). As we trivially have f(χ, p) = 0 if p does not
ramify in K/k, we can define the Artin conductor of χ by

f(χ) =
∏
p

pf(χ,p) (F.3)

where p denotes all the finite places (prime ideals) of k
We put, with the notations as before:

Λ(s, χ) = {|dk|χ(1)Nf(χ)}s/2
∏
v|∞

LV (s, χ)L(s, χ) (F.4)

where |dk| ∈ Q is the value of the absolute discriminant of k over Q; Nf(χ) > 0 the
absolute norm of f(χ); and for a real positive α and z ∈ C, we put (here and then)
αz = exp(z logα) with logα ∈ R.
So, the functional equation of L(s, χ) can be written as

Λ(1− s, χ) = W (χ)Λ(s, χ) (F.5)

with a constant W (χ) ∈ C× of modulus 1.
The constant W (χ)-named ”Artin’s Wurzelzahl” is written as

W (χ) = W∞(χ)τ(χ)(Nf(χ))−1/2 (F.6)

where W∞(χ) =
∏
v|∞

icodimV Gw
= i−a2(χ) and the complex constants τ(χ) are charac-

terised by the following formalism :

1. τ(χ1 + χ2) = τ(χ1)τ(χ2)

2. τ(IndGH(χ)) = τ(χ)
(
(Nk/QD(k′/k))1/2im(k′/k)

)χ(1)
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F. Functional equation

K

k′

k

H where D(k′/k) is the discriminant ideal of k′ on k and
m(k′/k) = #{v′ : v′|∞ : v′ is a place of k′, Gv′(k

′/k) 6=
{1}}

3. If χ is of dimension 1, we interpret accordingly as a Dirichlet character of
k, so τ(χ) is a Gauss sum involved in the functional equation of the abelian
L-function (see [MaD], II-2 for the explicit local formulas).

Note that ([Mar77]) we have W∞(χ) = W∞(χ) and f(χ) = f(χ). Finally, we
will rewrite the explicit functional equation by using the following identity ([Mar77,
p. 49]):

W (χ) =
Nf(χ)1/2

τ(χ)W∞(χ)
(F.7)

The sign of the discriminant dk ∈ Q is (−1)r2 . We put

√
dk = ir2 |dk|1/2 ∈ C

With all the notations, here is a explicit version of the functional equation :

L(1− s, χ) =

2r2χ(1) i
(a1+r2χ(1))

τ(χ)
√
dk

χ(1)π
1/2nχ(1)

(
Γ(s)

Γ(1−s)

)r2χ(1) ( Γ(s/2)
Γ((1−s)/2)

)a1(
Γ((1+s)/2)
Γ((2−s)/2)

)a2
BsL(s, χ)

(F.8)

where B is a non-zero positive real.
Let us write c(χ) (resp. c1(χ)) for the first non-zero coefficient in the Laurent

series expansion of L(s, χ) (resp. L(s, χ)) at s = 0 (resp. s = 1) and let r1(χ) be the
multiplicity of L(s, χ) at s = 1. Letting s → 0 in equation for L(1 − s, χ), we can
finally obtain (recall that Γ(1/2) = π1/2 and that Γ has a simple pole with residue
1 at s = 0):

c1(χ)

c(χ)
= (−1)r12r2χ(1)+a1(χ) (πi)

a2(χ)+r2χ(1)

τ(χ)
√
dk

χ(1)
(F.9)
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