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1 NOTATION

Let Fq be a finite field with q = pr elements where p a prime number and r ∈ Z>0.

2 SOLUTIONS TO xn = u

Let N(u) be the number of solutions in Fq to the equation xn = u.
Clearly, if u = 0 then x = 0. So, suppose u ̸= 0. Since F×

q is a cyclic group,
with say generator w, Fq ∋ u ̸= 0 can be written as u = wk. If x is a solution to
xn = u, then x is non-zero and thus can be written as x = wℓ. Consequently, x is a
solution if and only if wℓn = wk ⇔ wℓn−k = 1 ⇔ ℓn ≡ k (mod q− 1) if and only
if gcd(n,q− 1) | k. To summarise,

N(u) =

1 ,u = 0

d := gcd(n,q− 1) ,u ̸= 0

Lemma 1. The solution set of xn = u is in bijection with the solution set of xd = u with
u ̸= 0.

Remark 2. I just need that the size of the two solution sets is the same.

Proof. Let u = wk. If x ∈ Fq such that xn = u, then xdd
′
= u ⇒ (xd

′
)d = u and

thus xd
′

is a solution to xd = u. Conversely, suppose xd = u for some x ∈ Fq.
As d = gcd(n,q − 1), there are integers s, t ∈ Z such that ns + t(q − 1) = d.
Therefore,

xd = xns+t(q−1) = (xs)n · 1 = (xs)n = u

Hence, we have a bijection between the two solution sets. This completes the
proof. □

This allows us to assume without loss of generality that n | q− 1.

Lemma 3. The number of solutions to the equation xn = u in Fq, denoted by N(u) is
given by

∑
χn=1

χ(u).
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3 SOLUTIONS TO a0x
n0
0 + a2x

n2
2 + · · ·+ arxnrr = 0

This section follows Weil’s paper [Wei49]. Let a0,a1, . . . ,ar ∈ Fq, andn0,n1, . . . ,nr ∈
Z. We can assume all the ni’s are positive (only small modifications is required
for negative exponents). We want to find the number of solutions N of the equa-
tion

(1) a0x
n0
0 + a1x

n1
1 + · · ·+ arxnrr = 0

in Fq. For each i, let di = gcd(ni,q− 1) and Ni(u) be the number of solutions of
xni = u. If we put L(u) =

∑r
i=0 aiui, we find that

(2) N =
∑
L(u)=0

N0(u0)N1(u1) · · ·Nr(ur)

where the sum is over all tuples (u0, . . . ,ur) such that L(u) = 0.

Definition 4. Fix the map ϕ : F
×
q → C×. Let α ∈ Q/Z and n ∈ Z>0 such that

(qn − 1)α ≡ 0 (mod 1). Define χα,n : F×
q → C× by

χα,n(x) = ϕ(x)
(qn−1)α

We can extend this to Fq by defining at 0. We do that by

χα,n(0) =

0 ,α ̸≡ 0 mod 1

1 ,α ≡ 0 mod 1

For n = 1, we will write χα for χα,1

Lemma 5. If (q− 1)α ≡ 0 mod 1, then χα,n = χα(NFqn/Fq
(x))

Proof. χα,n(x) = ϕ(x)
(qn−1)α =

(
ϕ(x)(q−1)α

)1+q+q2+···+qn−1

= χα(x
1+q+q2+···+qn−1

) =

χα(NFqn/Fq
(x)). □

Proposition 6. The number of solutions to the equation xn = u in Fq, denoted byN(u)

is given by
∑

dα≡0 mod 1

χα(u).

Proof. When u = 0, then both sides become 1. When u ̸= 0, then we observe that

the right hand side is
d−1∑
v=0

χ1/d(u)
v. So, χ1/d(u) is then a d-th root of unity if and

only if u is a d-th power in F×
q . This completes the proof. □

Using this result, we have
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(3) N =
∑

α=(α0,...,αr)
diαi≡0 mod 1

∑
u=(u0,...,ur)
L(u)=0

χα0(u0) · · ·χαr(ur)

Notice that L(u) = 0 has qr points, and thus the inner sum amounts to qr when
α0 = · · · = αr = 0. In fact, if some, but not all, of the αi’s are 0, then the
sum amounts to 0. To see this, suppose α0, . . . ,αs−1 are the non-zero ones and
αs, . . . ,αr = 0. Then, L(u) = 0 has qr−s points and the double summation be-
comes

(4) qr−s
s−1∏
i=0

(∑
ui

χαi(ui)

)
and the claim follows from orthogonality of characters. Hence, converts to

(5) N = qr +
∑

α=(α0,...,αr)
diαi≡0 mod 1

0<αi<1

∑
u=(u0,...,ur)
L(u)=0

χα0(u0) · · ·χαr(ur)

We can rewrite the inner sum in a cleaner way. Clearly, the u0 = 0 terms con-
tribute nothing to the sum. So, just assume u0 ̸= 0, and let ui = u0vi for some
vi ∈ Fq. Then,

∑
u=(u0,...,ur)

u0+u1+···+ur=0

χα0(u0) · · ·χαr(ur) =
∑
u0 ̸=0

χα0+···+αr(u0)
∑

1+v1+···+vr=0

χα1(v1) · · ·χαr(vr)

Now, depending on whether α0 + · · ·+αr ≡ 0 mod 1, the outer sum is q− 1 and
0 respectively.

4 GAUSS AND JACOBI SUMS

This section follows [Wei49]. If you want to read more about Gauss and Jacobi
sums, please refer to [Con][IR90].

Now, for αi(q− 1), αi ̸≡ 0 mod 1, and α1 + · · ·+αr ≡ 0 mod 1 we can define

Definition 7 (Jacobi sums).

j(α) :=
∑

1+v1+···+vr=0

χα1(v1) · · ·χαr(vr)

=
1

q− 1

∑
u0+u1+···+ur=0

χα0(u0) · · ·χαr(ur)

In terms of Jacobi sums, we can write the number of solutions N of (1) by
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(6) N = qr + (q− 1)
∑

α=(α0,...,αr)
diαi≡0 mod 1

0<αi<1
α0+···+αr=0

χα0(a
−1
0 ) · · ·χαr(a−1

r )j(α)

These Jacobi sums are closely related to other sums called Gauss sums. We will
use Gauss sums to compute Jacobi sums further.

Definition 8. Define ψq : Fq → C× by

ψq(a) = e
2πi

TrFq/Fp
(a)

p

Proposition 9. The character ψq is not trivial, and every additive character of Fq is of
the form a 7→ ψq(ca) for some c ∈ Fq.

Proof. This follows from Artin’s theorem on linear independence of characters.
□

Definition 10. Let χ : Fq → C be any of the multiplicative character of Fq and ψq as
defined earlier. Then, the Gauss sum g(χ) is

(7) g(χ) :=
∑
x∈Fq

χ(x)ψq(x)

It is easy to see that if χ is the trivial character then g(χ) = 0. So suppose χ ̸= 1.
Then,

Proposition 11.
g(χ)g(χ) = q

Proof.

g(χ)g(χ) =
∑
y∈Fq

∑
x∈Fq

χ(xy−1)ψq(x− y)

=
∑
x∈Fq

χ(x)
∑
y∈Fq

ψq((x− 1)y)

=
∑

0̸=x∈Fq

χ(x)
∑

0 ̸=y∈Fq

ψq((x− 1)y)

= χ(1)
∑
y ̸=0

1 +
∑
x̸=0,1

χ(x)(−1)

= q− 1 + (−1)(−1)

= q

□
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Now, for t ̸= 0, if we replace x in g(χ) by tx, we get

g(χ) = χ(t)
∑
x∈Fq

χ(x)ψq(tx)

Using the previous proposition, and interchanging t and xwe have

(8) χ(x) =
g(χ)

q

∑
t∈Fq

χ(t)ψq(tx)

Remark 12. You can see this as the Fourier expansion of χ with respect to the additive
characters ψq.

Using this in the definition of Jacobi sums, we have

j(a) =
1

q− 1

∑
u0+u1+···+ur=0

χα0(u0) · · ·χαr(ur)

=
1
qr+1g(χα0) · · ·g(χαr)

∑
t

χα0
(t0) · · ·χαr(tr)

∑
u0+···+ur=0

ψ

(∑
i

tiui

)
The inner sum being a character sum on the vector space (u0, . . . ,ur) satisfying
u0 + · · ·+ ur = 0 with qr elements is either qr or 0 depending on whether ψ is
trivial or not. The former case happens if and only if all ti’s are equal. Indeed,
otherwise we can solve equations like

∑
ui = 0 and

∑
tiui = swith s ∈ Fq. Since

we have α0 + · · ·+ αr ≡ 0 mod 1 by definition of Jacobi sums, we can deduce
that

j(a) =
1
q
g(χα0) · · ·g(χαr)

After this we are interested to see what happens to the number of solutions when
we move from Fq to an extension Fqv for some positive integer v. To address this
question, we will need an important result of Davenport and Hasse.

Theorem 13 (Davenport-Hasse theorem).

−g(χα,v) = (−g(χα))
v

Proof. [Wei49][IR90] □

Let Nv be the number of solutions of equation (1) in the field Fqv . Consider (1)
as the equation of a variety in the projective space Pr of dimension r over Fq. Let
N be the number of solutions in the projective space, it is related to the number
of solutions on the affine space by N(q− 1) + 1 = N. Now, plugging this into we
get
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(9) N = 1 + q+ · · ·+ qr−1 +
∑

α=(α0,...,αr)
diαi≡0 mod 1

0<αi<1
α0+···+αr≡0 (mod 1)

χα0
(a0) · · ·χαr(ar)j(α)

Now, ifNv is the number of points on the variety over Fqv , we shall calculate the
series ∞∑

v=1

NvU
v−1

5 WEIL CONJECTURES

We will see how to do this in the special case of (1) when n1 = · · · = nr = n.
Suppose nαi ≡ 0 mod 1,α0 + · · ·+αr ≡ 0 mod 1, 0 < αi < 1. Let

µ = µ(α) = min{µ : (qµ − 1)αi ≡ 0 mod 1 ∀ 0 ⩽ i ⩽ r}

The extension Fqv such that (qv − 1)αi ≡ 0 mod 1 are those for which v is a
multiple of µ and in fact, those are all of them. Choosing a generator for Fqµ we
can define the characters χαi , the Gauss sums g(χαi) and the Jacobi sums j(α).
After this, let χαi,λµ,g(χαi,λµ), jλµ(α) the corresponding objects in the extension
Fqvµ . From Davenport-Hasse’s theorem and basic checking, we have

(1) χαi,λµ = χαi(ai)
λ

(2) g(χαi,λµ) = (−1)λ−1g(χαi)
λ

(3) jλµ(α) = (−1)(λ−1)(r−1)j(a)λ

So,

(10) Nv = 1+qv+ · · ·+qv(r−1)+
∑

α=(α0,...,αr)
diαi≡0 mod 1

0<αi<1
α0+···+αr≡0 (mod 1)

χα0,v(a
−1
0 ) · · ·χαr,v(a

−1
r )jv(α)

with v = λµ. We let q = qµ for simplicity of notation. Then, the previous equation
becomes (after possibly putting v = λ)
(11)
Nv = 1+qv+ · · ·+qv(r−1)+

∑
α=(α0,...,αr)

diαi≡0 mod 1
0<αi<1

α0+···+αr≡0 (mod 1)

(−1)(v−1)(r−1)
(
χα0(a

−1
0 ) · · ·χαr(a−1

r )j(α)
)v
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Using the identity ∞∑
v=1

XvUv−1 =
d

dU
(− log(1 −XU))

we have∞∑
v=1

NvU
v−1 =

r−1∑
i=0

d

dU
(− log(1 − qiU)) + (−1)r

∑
α

1
µ(α)

d

dU
(− log(1 −C(α)Uµ(α))

where C(α) = (−1)r−1χα0(a
−1
0 ) · · ·χαr(a−1

r )j(α)

Note that the map x 7→ aq is an automorphism of Fqµ which leaves ai unchanged.
Thus, C(qα) = C(α). Thus, in the last sum, the terms corresponding to the sets α
and qvα with 0 ⩽ v ⩽ µ− 1 are the same and there are µ(α) many of them, and
hence we can cancel the µ(α).

Definition 14. Let V be a variety without singular points, of dimension n, defined over
a finite field with q elements. Let Nv be the number of rational points on V over the
extension Fqv of Fq. Then, we define

Z(V ,U) := exp

( ∞∑
v=1

Nk
Uv

v

)

From the above discussion, we have

Z(V ,U) =
P(U)(−1)r

(1 −U)(1 − qU) · · · (1 − qr−1U)

with P(U) =
∏
α

(1 −C(α)U).

Weil conjectures the following:

Theorem 15 (Weil’s conjectures). Let V be a variety without singular points, and of
dimension n. Then,

(1) (Rationality) Z(V ,U) is a rational function.
(2) (Functional equation) The function Z(V ,U) satisfies the functional equation

Z(V ,
1
qnU

) = ϵqnχ/2UχZ(V ,U)

where ϵ = ±1 and χ is the Euler-Poincaré characteristic of V (intersection num-
ber of the diagonal with itself on the product V × V).

(3) (Riemann Hypothesis) One can write

Z(V ,U) =
P1(U)P3(U) · · ·P2n−1(U)

P0(U)P2(U) · · ·P2n(U)
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where P0(U) = 1 −U,P2n(U) = 1 − qnU and for 1 ⩽ h ⩽ 2n− 1 we have

Ph(U) =

Bh∏
i=1

(1 − ah,iU)

where αh,i are algebraic integers with absolute value qh/2.
(4) The degree Bh of Ph called the Betti numbers of the variety B. Then, the Euler-

Poincaré characteristic χ can be expressed by

χ =
∑
h

(−1)hBh

6 HISTORY OF WEIL CONJECTURES AND LITERATURE

While writing this section, I realised that I cannot do much justice due to my very
limited knowledge. I shall instead share this wonderful commentary written by
M. Goresky [Gor18], and also refer to the notes by Tamás Szamuely click here for
a proper timeline of the progress on the conjectures. I also found the notes by
Hindry [Hin12] (in french) very helpful while preparing for this talk.
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