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1 NOTATION

Let IF4 be a finite field with g = p" elements where p a prime numberand r € Z..

2 SOLUTIONS TO X" =u

Let N(u) be the number of solutions in IF to the equation x™ = w.

Clearly, if u = 0 then x = 0. So, suppose u # 0. Since Fj is a cyclic group,
with say generator w, [F; > u # 0 can be written as u = wk. If x is a solution to
x™ = u, then x is non-zero and thus can be written as x = w'. Consequently, x is a
solution if and only if W =wk e wh*=1< tn=% (mod q—1)if and only
if ged(n, g — 1) | k. To summarise,

1 ,u=20

N(u) =
d:=gcd(n,q—1) ,u#0

Lemma 1. The solution set of x"* = w is in bijection with the solution set of x4 = u with
u#0.

Remark 2. [ just need that the size of the two solution sets is the same.

Proof. Let u = wk. If x € IFq such that x™ = u, then x4 = = (xd/)d = uand
thus x4’ is a solution to x4 = 1. Conversely, suppose x4 = u for some x € Fy.
As d = gcd(n, q — 1), there are integers s,t € Z such that ns+t(q—1) = d.
Therefore,

Xd _ an—i—t(q—l) — (XS)TI 1 = (XS)TL —u
Hence, we have a bijection between the two solution sets. This completes the
proof. O

This allows us to assume without loss of generality thatn | g — 1.

Lemma 3. The number of solutions to the equation x™ = w in IFq, denoted by N(u) is
given by Z x(u).

x"=1

Date: October 2023.



PRIME TIME SEMINAR VENUE: LH-1, DEPARTMENT OF MATHEMATICS, IISC BENGALURU 2
3 SOLUTIONS TO agxy® 4 axxy? + -+ amx;" =0

This section follows Weil’s paper [Wei49]. Let ag, ay, ..., ar € Fg,and ng,ny,...,n; €
Z. We can assume all the n;’s are positive (only small modifications is required
for negative exponents). We want to find the number of solutions N of the equa-
tion

(1) agxy’ + arx]t 4+ ax) =

in IFy. For each 1, let d; = gcd(ny, g — 1) and Nj(u) be the number of solutions of

x™ =u. IfweputL(u) = > ;auy, we find that

2) N = Z No(1)Nq (w) -+ Ny (1)
=0

where the sum is over all tuples (ug,...,uy) such that L(u) = 0.

Definition 4. Fix the map ¢ : F: — C*. Let « € Q/Z and n € Z~ such that
(q"—1)ax =0 (mod 1). Define xon : ng — C* by

Xan(x) = d)(x)(q“—l)cx
We can extend this to IF 4 by defining at 0. We do that by

0 ,x#Z0 mod1

Xoc,n(o) =
1 ,x=0 mod1

Forn =1, we will write X« for X« 1

Lemma 5. If ( —1)ac =0 mod 1, then Xon = Xa(INF n /F, (X))

n L+qtg? g ne
Proof. Xeon(x) = b(x) "% = (p(x)(a-)%) = X (xFa T =
Xa (N /F, (X). O

Proposition 6. The number of solutions to the equation x™ = win IFq, denoted by N(u)

is given by Z Xo(W).
da=0 mod 1

Proof. When u = 0, then both sides become 1. When u # 0, then we observe that

d—1

the right hand side is Z X1/4(w)”. So, X1/4(u) is then a d-th root of unity if and
v=0

only if uis a d-th power in ]F;. This completes the proof. OJ

Using this result, we have
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(3) N= ) > Xap(ug) - Xor, (1)

(X:((X'O/'“/(XT) u:(uOI'--/uT‘)
dia;i=0 mod 1 L(u)=0

Notice that L(u) = 0 has q" points, and thus the inner sum amounts to q" when
6 = -+ = & = 0. In fact, if some, but not all, of the «;’s are 0, then the
sum amounts to 0. To see this, suppose «, ..., xs_1 are the non-zero ones and
&s,..., & = 0. Then, L(u) = 0 has q"* points and the double summation be-
comes

s—1
(4) a1 (Z Xo (m))
i=0 \ u
and the claim follows from orthogonality of characters. Hence, converts to

(5) N=q+ ) D Xag(uo) -+ Xory (1)

(X:((XO,...,(XT) u:(LL(),...,Ur)
di;=0 mod 1 L(u)=0
O<ai<l
We can rewrite the inner sum in a cleaner way. Clearly, the up = 0 terms con-
tribute nothing to the sum. So, just assume uy # 0, and let u; = ugv; for some

vi € Fq. Then,

Z Xog (up) - - 'chr(ur) = Z Xog+--4ar (up) Z Xy (vi) -~ *Xoor (vr)

u=(ug,...,\Uy) up#0 1-+vi+-4vr=0
Up+ug+--+uy =0

Now, depending on whether &g+ - - - + & =0 mod 1, the outer sum is q —1 and
0 respectively.

4 GAUSS AND JACOBI SUMS

This section follows [Wei49]. If you want to read more about Gauss and Jacobi
sums, please refer to [Con][IR90].

Now, for ai(q—1), ¢y Z#0 mod 1,and &1 + -+ & =0 mod 1 we can define

Definition 7 (Jacobi sums).

](0() = Z Xy (v1) - “Xar (vr)
1+vi 4 =0

Y )X ()

q—1
ug+uq+--+ur=0

In terms of Jacobi sums, we can write the number of solutions N of (1) by
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(6) N=q"+@q-1 Y  XelaghXa(a;"i(x)

(X:((XO,...,(XT)
dix;=0 mod 1
O<ai<1
xg++++otr =0
These Jacobi sums are closely related to other sums called Gauss sums. We will

use Gauss sums to compute Jacobi sums further.

Definition 8. Define {4 : Fq — C* by

T g /Ep ()
q9/7p
wq(a) — 627'[1 P

Proposition 9. The character \pq is not trivial, and every additive character of Fq is of
the form a — Pg4(ca) for some c € Fy.

Proof. This follows from Artin’s theorem on linear independence of characters.
O

Definition 10. Let x : IFq — C be any of the multiplicative character of Fq and \q as
defined earlier. Then, the Gauss sum g(X) is

(7) gx) = ) x(x)bq(x)

x€lFq

It is easy to see that if x is the trivial character then g(x) = 0. So suppose x # 1.
Then,

Proposition 11.
9(x)g(x) =4

Proof.
gx)gx) = > D x(xy bg(x—y)

yelFq x€lFq

=) x(x) Y Wgllx—1)y)

x€lFq yelFq

= Y x> bgllx—1)y)

0#x€lFq 0#yclFq

=x(1)) 1+ ) x(x)(-1)

y#0 x#£0,1
=q—1+(=1)(-1)

=q
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Now, for t # 0, if we replace x in g(x) by tx, we get
gx) =x(t) ) x(x)bq(tx)

x€lFq

Using the previous proposition, and interchanging t and x we have

®) X(x) = % S Ry ()

teFq

Remark 12. You can see this as the Fourier expansion of x with respect to the additive
characters \g.

Using this in the definition of Jacobi sums, we have

. 1
jla) = a—1 Z Xoco(uO) X (Ur)
Uptug+-+ur=0

= %Q(cho)"'g(X(Xr)ZT(O(O(tO)"'Yar(tr) Z E (Ztiui>
t i

Upt--tur=0

The inner sum being a character sum on the vector space (uy,...,u,) satisfying
Ug+ -+ +u, = 0 with q" elements is either q" or 0 depending on whether  is
trivial or not. The former case happens if and only if all t;’s are equal. Indeed,
otherwise we can solve equations like }_u; =0and }_ tju; = s with s € [Fy. Since
we have g+ --- + & = 0 mod 1 by definition of Jacobi sums, we can deduce
that

, 1

jla) = EQ(X““) -+ 9(Xo)
After this we are interested to see what happens to the number of solutions when
we move from [F to an extension IFyv for some positive integer v. To address this
question, we will need an important result of Davenport and Hasse.

Theorem 13 (Davenport-Hasse theorem).

v

—9(Xav) = (—9(Xa))

Proof. [Wei49][IR90] UJ

Let N, be the number of solutions of equation (1) in the field F4v. Consider (1)
as the equation of a variety in the projective space IP" of dimension r over [Fq. Let
N be the number of solutions in the projective space, it is related to the number
of solutions on the affine space by N(q — 1) + 1 = N. Now, plugging this into we
get
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9 N=l+q+--+q '+ > X (@0) * + Xoc, (ar)j (@)

0(:(0(0,...,061‘)
di;=0 mod 1
O<ai<1
op+-+0r=0 (mod 1)

Now, if N,, is the number of points on the variety over IF;v, we shall calculate the

series
o0
> Nt
v=1
5 WEIL CONJECTURES
We will see how to do this in the special case of (1) whenn; = --- =n, = n.

Supposena; =0 mod 1,9+ -+ =0 mod 1,0 < o; < 1. Let
w=pla) =min{p: (g* -1z =0 mod 1V0O<<i<}

The extension Fqv such that (q¥ —1)a; = 0 mod 1 are those for which v is a
multiple of u and in fact, those are all of them. Choosing a generator for Fqu we
can define the characters X;, the Gauss sums g(X«;) and the Jacobi sums j(«).
After this, let Xo, Au, 9(Xoy 2n) Ian(a) the corresponding objects in the extension
Fqvu. From Davenport-Hasse’s theorem and basic checking, we have

(1) XagAp = X(xi(ai)k

) 9(Xayr) = (1)1 glxe)
(3) jau(e) = (=1)AD=Dj(a)

So,

(10) Nv=1+qv+---+qv(r_1)+ Z Xoco,v(aal)"'Xocr,v(ar_l)jv(‘x)

(X:((XO/'-'/(XT)
dixi=0 mod 1
O<ai<1
op++or-=0 (mod 1)
withv = Ap. Welet q = g* for simplicity of notation. Then, the previous equation
becomes (after possibly putting v = A)

(11)

- v
Ny=1+q"+ - +q" "+ > (—1)v-Dr=D (xoco(aal)---xar(ail)j(oc))

O(:(OCO/-"/(XT‘)
dixi=0 mod 1
O<ai<l
xo+-+or=0 (mod 1)
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Using the identity

o d

vy v—1 _ o o

vg_l XUV = —du( log(1 —XU))
we have
00 r—1 d 1 d

~No1v-1 el i 1T el . p(o)

Vg_l N, U iE_O du( log(1—q'U))+(-1) E(X o) du( log(1 — C(o)UH™)

where C(x) = (—1)T_1Xo(0(aal) - -Xocr(ar_l)j(oc)

Note that the map x > a9 is an automorphism of IF« which leaves a; unchanged.
Thus, C(qa&) = C(«). Thus, in the last sum, the terms corresponding to the sets «
and q"o with 0 < v < p—1 are the same and there are p(«) many of them, and
hence we can cancel the pu(«).

Definition 14. Let V be a variety without singular points, of dimension n, defined over
a finite field with q elements. Let N, be the number of rational points on V over the
extension IFqv of IFq. Then, we define

3(V,U) :=exp <Z Nk$>
v=1

From the above discussion, we have

T

P(W)=Y
(I-W(I—qu)---(1—q1u)

with P(U) = [ J(1 = C(a)W).

x

Weil conjectures the following:

Theorem 15 (Weil’s conjectures). Let V be a variety without singular points, and of
dimension n. Then,

(1) (Rationality) 3(V,U) is a rational function.
(2) (Functional equation) The function 3(V,U) satisfies the functional equation

3(V, ——) = eq™/2UX3(V,U)

qru
where € = *1 and x is the Euler-Poincaré characteristic of V (intersection num-
ber of the diagonal with itself on the product V x V).
(3) (Riemann Hypothesis) One can write
P1(U)P3(U) - - - Pon 1 (U)

SV = 5 P, (W - Pon (W)
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where Pop(U) =1—U, Py (U) =1 —q"Uand for 1 < h < 2n—1 we have
Bh
PrU) =] (1 - an;W)
i=1
where «y, ; are algebraic integers with absolute value qM/2.
(4) The degree By, of Py, called the Betti numbers of the variety B. Then, the Euler-
Poincaré characteristic x can be expressed by

n
x=> (-1)"Bp
h
6 HISTORY OF WEIL CONJECTURES AND LITERATURE

While writing this section, I realised that I cannot do much justice due to my very
limited knowledge. I shall instead share this wonderful commentary written by
M. Goresky [Gor18], and also refer to the notes by Tamés Szamuely click here for
a proper timeline of the progress on the conjectures. I also found the notes by
Hindry [Hin12] (in french) very helpful while preparing for this talk.
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