PRIME TIME SEMINAR VENUE: LH-1, DEPARTMENT OF MATHEMATICS, IISC BENGALURU

IRISH DEBBARMA, MASTERS STUDENT

1 NOTATION

Let \mathbb{F}_q be a finite field with $q = p^r$ elements where p a prime number and $r \in \mathbb{Z}_{>0}$.

2 SOLUTIONS TO
$$x^n = u$$

Let N(u) be the number of solutions in \mathbb{F}_q to the equation $x^n = u$. Clearly, if u = 0 then x = 0. So, suppose $u \neq 0$. Since \mathbb{F}_q^{\times} is a cyclic group, with say generator w, $\mathbb{F}_q \ni u \neq 0$ can be written as $u = w^k$. If x is a solution to $x^n = u$, then x is non-zero and thus can be written as $x = w^{\ell}$. Consequently, x is a solution if and only if $w^{\ell n} = w^k \Leftrightarrow w^{\ell n - k} = 1 \Leftrightarrow \ell n \equiv k \pmod{q-1}$ if and only

if gcd(n, q-1) | k. To summarise,

$$N(u) = \begin{cases} 1 & , u = 0 \\ d := gcd(n, q - 1) & , u \neq 0 \end{cases}$$

Lemma 1. The solution set of $x^n = u$ is in bijection with the solution set of $x^d = u$ with $u \neq 0$.

Remark 2. *I just need that the size of the two solution sets is the same.*

Proof. Let $u = w^k$. If $x \in \mathbb{F}_q$ such that $x^n = u$, then $x^{dd'} = u \Rightarrow (x^{d'})^d = u$ and thus $x^{d'}$ is a solution to $x^d = u$. Conversely, suppose $x^d = u$ for some $x \in \mathbb{F}_q$. As $d = \gcd(n, q - 1)$, there are integers $s, t \in \mathbb{Z}$ such that ns + t(q - 1) = d. Therefore,

$$x^{d} = x^{ns+t(q-1)} = (x^{s})^{n} \cdot 1 = (x^{s})^{n} = u$$

Hence, we have a bijection between the two solution sets. This completes the proof. $\hfill \Box$

This allows us to assume without loss of generality that $n \mid q - 1$.

Lemma 3. The number of solutions to the equation $x^n = u$ in \mathbb{F}_q , denoted by N(u) is given by $\sum_{\chi^n = 1} \chi(u)$.

Date: October 2023.

3 Solutions to $a_0 x_0^{n_0} + a_2 x_2^{n_2} + \dots + a_r x_r^{n_r} = 0$

This section follows Weil's paper [Wei49]. Let $a_0, a_1, \ldots, a_r \in \mathbb{F}_q$, and $n_0, n_1, \ldots, n_r \in \mathbb{Z}$. We can assume all the n_i 's are positive (only small modifications is required for negative exponents). We want to find the number of solutions N of the equation

(1)
$$a_0 x_0^{n_0} + a_1 x_1^{n_1} + \dots + a_r x_r^{n_r} = 0$$

in \mathbb{F}_q . For each i, let $d_i = gcd(n_i, q-1)$ and $N_i(u)$ be the number of solutions of $x^{n_i} = u$. If we put $L(u) = \sum_{i=0}^r a_i u_i$, we find that

(2)
$$N = \sum_{L(u)=0} N_0(u_0) N_1(u_1) \cdots N_r(u_r)$$

where the sum is over all tuples (u_0, \ldots, u_r) such that L(u) = 0.

Definition 4. *Fix the map* $\phi : \overline{\mathbb{F}}_q^{\times} \to \mathbb{C}^{\times}$. *Let* $\alpha \in \mathbb{Q}/\mathbb{Z}$ *and* $n \in \mathbb{Z}_{>0}$ *such that* $(q^n - 1)\alpha \equiv 0 \pmod{1}$. *Define* $\chi_{\alpha,n} : \mathbb{F}_q^{\times} \to \mathbb{C}^{\times}$ *by*

$$\chi_{\alpha,n}(x) = \phi(x)^{(q^n - 1)\alpha}$$

We can extend this to \mathbb{F}_q by defining at 0. We do that by

$$\chi_{\alpha,n}(0) = \begin{cases} 0 & , \alpha \not\equiv 0 \mod 1\\ 1 & , \alpha \equiv 0 \mod 1 \end{cases}$$

For n = 1, we will write χ_{α} for $\chi_{\alpha,1}$

Lemma 5. *If* $(q-1)\alpha \equiv 0 \mod 1$ *, then* $\chi_{\alpha,n} = \chi_{\alpha}(\mathbb{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x))$

 $\begin{array}{l} \textit{Proof.} \ \chi_{\alpha,n}(x) = \varphi(x)^{(q^n-1)\alpha} = \left(\varphi(x)^{(q-1)\alpha}\right)^{1+q+q^2+\dots+q^{n-1}} = \chi_{\alpha}(x^{1+q+q^2+\dots+q^{n-1}}) = \\ \chi_{\alpha}(\mathbb{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x)). \end{array} \qquad \qquad \Box$

Proposition 6. The number of solutions to the equation $x^n = u$ in \mathbb{F}_q , denoted by N(u) is given by $\sum_{d\alpha \equiv 0 \mod 1} \chi_{\alpha}(u)$.

Proof. When u = 0, then both sides become 1. When $u \neq 0$, then we observe that the right hand side is $\sum_{\nu=0}^{d-1} \chi_{1/d}(u)^{\nu}$. So, $\chi_{1/d}(u)$ is then a d-th root of unity if and only if u is a d-th power in \mathbb{F}_q^{\times} . This completes the proof.

Using this result, we have

(3)
$$N = \sum_{\substack{\alpha = (\alpha_0, \dots, \alpha_r) \\ d_i \alpha_i \equiv 0 \mod 1}} \sum_{\substack{u = (u_0, \dots, u_r) \\ L(u) = 0}} \chi_{\alpha_0}(u_0) \cdots \chi_{\alpha_r}(u_r)$$

Notice that L(u) = 0 has q^r points, and thus the inner sum amounts to q^r when $\alpha_0 = \cdots = \alpha_r = 0$. In fact, if some, but not all, of the α_i 's are 0, then the sum amounts to 0. To see this, suppose $\alpha_0, \ldots, \alpha_{s-1}$ are the non-zero ones and $\alpha_s, \ldots, \alpha_r = 0$. Then, L(u) = 0 has q^{r-s} points and the double summation becomes

(4)
$$q^{r-s} \prod_{i=0}^{s-1} \left(\sum_{u_i} \chi_{\alpha_i}(u_i) \right)$$

and the claim follows from orthogonality of characters. Hence, converts to

(5)
$$N = q^{r} + \sum_{\substack{\alpha = (\alpha_{0}, \dots, \alpha_{r}) \\ d_{i}\alpha_{i} \equiv 0 \mod 1 \\ 0 < \alpha_{i} < 1}} \sum_{\substack{u = (u_{0}, \dots, u_{r}) \\ L(u) = 0}} \chi_{\alpha_{0}}(u_{0}) \cdots \chi_{\alpha_{r}}(u_{r})$$

We can rewrite the inner sum in a cleaner way. Clearly, the $u_0 = 0$ terms contribute nothing to the sum. So, just assume $u_0 \neq 0$, and let $u_i = u_0 v_i$ for some $v_i \in \mathbb{F}_q$. Then,

$$\sum_{\substack{\mathfrak{u}=(\mathfrak{u}_0,\ldots,\mathfrak{u}_r)\\\mathfrak{u}_0+\mathfrak{u}_1+\cdots+\mathfrak{u}_r=0}}\chi_{\alpha_0}(\mathfrak{u}_0)\cdots\chi_{\alpha_r}(\mathfrak{u}_r)=\sum_{\mathfrak{u}_0\neq 0}\chi_{\alpha_0+\cdots+\alpha_r}(\mathfrak{u}_0)\sum_{1+\nu_1+\cdots+\nu_r=0}\chi_{\alpha_1}(\nu_1)\cdots\chi_{\alpha_r}(\nu_r)$$

Now, depending on whether $\alpha_0 + \cdots + \alpha_r \equiv 0 \mod 1$, the outer sum is q - 1 and 0 respectively.

4 GAUSS AND JACOBI SUMS

This section follows [Wei49]. If you want to read more about Gauss and Jacobi sums, please refer to [Con][IR90].

Now, for $\alpha_i(q-1)$, $\alpha_i \not\equiv 0 \mod 1$, and $\alpha_1 + \dots + \alpha_r \equiv 0 \mod 1$ we can define

Definition 7 (Jacobi sums).

$$\begin{split} \mathfrak{j}(\alpha) &\coloneqq \sum_{1+\nu_1+\dots+\nu_r=0} \chi_{\alpha_1}(\nu_1) \cdots \chi_{\alpha_r}(\nu_r) \\ &= \frac{1}{q-1} \sum_{\mathfrak{u}_0+\mathfrak{u}_1+\dots+\mathfrak{u}_r=0} \chi_{\alpha_0}(\mathfrak{u}_0) \cdots \chi_{\alpha_r}(\mathfrak{u}_r) \end{split}$$

In terms of Jacobi sums, we can write the number of solutions N of (1) by

(6)
$$N = q^{r} + (q-1) \sum_{\substack{\alpha = (\alpha_0, \dots, \alpha_r) \\ d_i \alpha_i \equiv 0 \mod 1 \\ 0 < \alpha_i < 1 \\ \alpha_0 + \dots + \alpha_r = 0}} \chi_{\alpha_0}(a_0^{-1}) \cdots \chi_{\alpha_r}(a_r^{-1}) j(\alpha)$$

These Jacobi sums are closely related to other sums called Gauss sums. We will use Gauss sums to compute Jacobi sums further.

Definition 8. *Define* $\psi_q : \mathbb{F}_q \to \mathbb{C}^{\times}$ *by*

$$\psi_{\mathfrak{q}}(\mathfrak{a}) = e^{2\pi \mathfrak{i} \frac{\operatorname{Tr}_{\mathbb{F}_{\mathfrak{q}}}/\mathbb{F}_{\mathfrak{p}}(\mathfrak{a})}{p}}$$

Proposition 9. The character ψ_q is not trivial, and every additive character of \mathbb{F}_q is of the form $a \mapsto \psi_q(ca)$ for some $c \in \mathbb{F}_q$.

Proof. This follows from Artin's theorem on linear independence of characters. \Box

Definition 10. Let $\chi : \mathbb{F}_q \to \mathbb{C}$ be any of the multiplicative character of \mathbb{F}_q and ψ_q as defined earlier. Then, the Gauss sum $g(\chi)$ is

(7)
$$g(\chi) := \sum_{x \in \mathbb{F}_q} \chi(x) \psi_q(x)$$

It is easy to see that if χ is the trivial character then $g(\chi) = 0$. So suppose $\chi \neq 1$. Then,

Proposition 11.

$$g(\chi)\overline{g}(\chi) = q$$

Proof.

$$\begin{split} g(\chi)\overline{g}(\chi) &= \sum_{y \in \mathbb{F}_q} \sum_{x \in \mathbb{F}_q} \chi(xy^{-1}) \psi_q(x-y) \\ &= \sum_{x \in \mathbb{F}_q} \chi(x) \sum_{y \in \mathbb{F}_q} \psi_q((x-1)y) \\ &= \sum_{0 \neq x \in \mathbb{F}_q} \chi(x) \sum_{0 \neq y \in \mathbb{F}_q} \psi_q((x-1)y) \\ &= \chi(1) \sum_{y \neq 0} 1 + \sum_{x \neq 0, 1} \chi(x)(-1) \\ &= q - 1 + (-1)(-1) \\ &= q \end{split}$$

Now, for $t \neq 0$, if we replace x in $g(\chi)$ by tx, we get

$$g(\chi) = \chi(t) \sum_{x \in \mathbb{F}_q} \chi(x) \psi_q(tx)$$

Using the previous proposition, and interchanging t and x we have

(8)
$$\chi(\mathbf{x}) = \frac{g(\chi)}{q} \sum_{\mathbf{t} \in \mathbb{F}_q} \overline{\chi}(\mathbf{t}) \overline{\psi}_q(\mathbf{t}\mathbf{x})$$

Remark 12. You can see this as the Fourier expansion of χ with respect to the additive characters ψ_q .

Using this in the definition of Jacobi sums, we have

$$\begin{split} \mathfrak{j}(\mathfrak{a}) &= \frac{1}{q-1} \sum_{\mathfrak{u}_0 + \mathfrak{u}_1 + \dots + \mathfrak{u}_r = 0} \chi_{\alpha_0}(\mathfrak{u}_0) \cdots \chi_{\alpha_r}(\mathfrak{u}_r) \\ &= \frac{1}{q^{r+1}} g(\chi_{\alpha_0}) \cdots g(\chi_{\alpha_r}) \sum_t \overline{\chi}_{\alpha_0}(\mathfrak{t}_0) \cdots \overline{\chi}_{\alpha_r}(\mathfrak{t}_r) \sum_{\mathfrak{u}_0 + \dots + \mathfrak{u}_r = 0} \overline{\psi} \left(\sum_i \mathfrak{t}_i \mathfrak{u}_i \right) \end{split}$$

The inner sum being a character sum on the vector space (u_0, \ldots, u_r) satisfying $u_0 + \cdots + u_r = 0$ with q^r elements is either q^r or 0 depending on whether $\overline{\psi}$ is trivial or not. The former case happens if and only if all t_i 's are equal. Indeed, otherwise we can solve equations like $\sum u_i = 0$ and $\sum t_i u_i = s$ with $s \in \mathbb{F}_q$. Since we have $\alpha_0 + \cdots + \alpha_r \equiv 0 \mod 1$ by definition of Jacobi sums, we can deduce that

$$\mathfrak{j}(\mathfrak{a}) = \frac{1}{q} g(\chi_{\alpha_0}) \cdots g(\chi_{\alpha_r})$$

After this we are interested to see what happens to the number of solutions when we move from \mathbb{F}_q to an extension $\mathbb{F}_{q^{\nu}}$ for some positive integer ν . To address this question, we will need an important result of Davenport and Hasse.

Theorem 13 (Davenport-Hasse theorem).

$$-g(\chi_{\alpha,\nu}) = (-g(\chi_{\alpha}))^{\nu}$$

Proof. [Wei49][IR90]

Let N_{ν} be the number of solutions of equation (1) in the field $\mathbb{F}_{q^{\nu}}$. Consider (1) as the equation of a variety in the projective space \mathbb{P}^{r} of dimension r over \mathbb{F}_{q} . Let \overline{N} be the number of solutions in the projective space, it is related to the number of solutions on the affine space by $\overline{N}(q-1) + 1 = N$. Now, plugging this into we get

(9)
$$\overline{N} = 1 + q + \dots + q^{r-1} + \sum_{\substack{\alpha = (\alpha_0, \dots, \alpha_r) \\ d_i \alpha_i \equiv 0 \mod 1 \\ 0 < \alpha_i < 1 \\ \alpha_0 + \dots + \alpha_r \equiv 0 \pmod{1}} \overline{\chi}_{\alpha_0}(a_0) \cdots \overline{\chi}_{\alpha_r}(a_r) \mathbf{j}(\alpha)$$

Now, if \overline{N}_{ν} is the number of points on the variety over $\mathbb{F}_{q^{\nu}}$, we shall calculate the series

$$\sum_{\nu=1}^\infty \overline{N}_\nu U^{\nu-1}$$

5 WEIL CONJECTURES

We will see how to do this in the special case of (1) when $n_1 = \cdots = n_r = n$. Suppose $n\alpha_i \equiv 0 \mod 1, \alpha_0 + \cdots + \alpha_r \equiv 0 \mod 1, 0 < \alpha_i < 1$. Let

$$\mu = \mu(\alpha) = \min\{\mu : (q^{\mu} - 1)\alpha_{i} \equiv 0 \mod 1 \ \forall \ 0 \leqslant i \leqslant r\}$$

The extension $\mathbb{F}_{q^{\nu}}$ such that $(q^{\nu} - 1)\alpha_i \equiv 0 \mod 1$ are those for which ν is a multiple of μ and in fact, those are all of them. Choosing a generator for $\mathbb{F}_{q^{\mu}}$ we can define the characters χ_{α_i} , the Gauss sums $g(\chi_{\alpha_i})$ and the Jacobi sums $j(\alpha)$. After this, let $\chi_{\alpha_i,\lambda\mu}$, $g(\chi_{\alpha_i,\lambda\mu})$, $j_{\lambda\mu}(\alpha)$ the corresponding objects in the extension $\mathbb{F}_{q^{\nu\mu}}$. From Davenport-Hasse's theorem and basic checking, we have

(1)
$$\chi_{\alpha_{i},\lambda\mu} = \chi_{\alpha_{i}}(a_{i})^{\lambda}$$

(2) $g(\chi_{\alpha_{i},\lambda\mu}) = (-1)^{\lambda-1}g(\chi_{\alpha_{i}})^{\lambda}$
(3) $j_{\lambda\mu}(\alpha) = (-1)^{(\lambda-1)(r-1)}j(\alpha)^{\lambda}$

So,

$$(10) \ \overline{N}_{\nu} = 1 + q^{\nu} + \dots + q^{\nu(r-1)} + \sum_{\substack{\alpha = (\alpha_0, \dots, \alpha_r) \\ d_i \alpha_i \equiv 0 \mod 1 \\ 0 < \alpha_i < 1 \\ \alpha_0 + \dots + \alpha_r \equiv 0 \pmod{1}}} \chi_{\alpha_0, \nu}(\alpha_0^{-1}) \cdots \chi_{\alpha_r, \nu}(\alpha_r^{-1}) j_{\nu}(\alpha)$$

with $v = \lambda \mu$. We let $q = q^{\mu}$ for simplicity of notation. Then, the previous equation becomes (after possibly putting $v = \lambda$) (11)

$$\overline{N}_{\nu} = 1 + q^{\nu} + \dots + q^{\nu(r-1)} + \sum_{\substack{\alpha = (\alpha_0, \dots, \alpha_r) \\ d_i \alpha_i \equiv 0 \mod 1 \\ 0 < \alpha_i < 1 \\ \alpha_0 + \dots + \alpha_r \equiv 0 \pmod{1} } (-1)^{(\nu-1)(r-1)} \left(\chi_{\alpha_0}(\alpha_0^{-1}) \cdots \chi_{\alpha_r}(\alpha_r^{-1}) j(\alpha) \right)^{\nu}$$

Using the identity

$$\sum_{\nu=1}^{\infty} X^{\nu} U^{\nu-1} = \frac{d}{dU} (-\log(1 - XU))$$

- -

we have

$$\begin{split} &\sum_{\nu=1}^{\infty} \overline{N}_{\nu} U^{\nu-1} = \sum_{i=0}^{r-1} \frac{d}{dU} (-\log(1-q^{i}U)) + (-1)^{r} \sum_{\alpha} \frac{1}{\mu(\alpha)} \frac{d}{dU} (-\log(1-C(\alpha)U^{\mu(\alpha)}) \\ & \text{ where } C(\alpha) = (-1)^{r-1} \chi_{\alpha_{0}}(a_{0}^{-1}) \cdots \chi_{\alpha_{r}}(a_{r}^{-1}) j(\alpha) \end{split}$$

Note that the map $x \mapsto a^q$ is an automorphism of $\mathbb{F}_{q^{\mu}}$ which leaves a_i unchanged. Thus, $C(q\alpha) = C(\alpha)$. Thus, in the last sum, the terms corresponding to the sets α and $q^{\nu}\alpha$ with $0 \leq \nu \leq \mu - 1$ are the same and there are $\mu(\alpha)$ many of them, and hence we can cancel the $\mu(\alpha)$.

Definition 14. Let V be a variety without singular points, of dimension n, defined over a finite field with q elements. Let \overline{N}_{ν} be the number of rational points on V over the extension $\mathbb{F}_{q^{\nu}}$ of \mathbb{F}_{q} . Then, we define

$$\mathfrak{Z}(\mathsf{V},\mathsf{U}) := \exp\left(\sum_{\nu=1}^{\infty} \overline{\mathsf{N}}_{\mathsf{k}} \frac{\mathsf{U}^{\nu}}{\nu}\right)$$

From the above discussion, we have

$$\mathfrak{Z}(V, U) = \frac{P(U)^{(-1)^{r}}}{(1-U)(1-qU)\cdots(1-q^{r-1}U)}$$

with $P(U) = \prod_{\alpha} (1 - C(\alpha)U).$

Weil conjectures the following:

Theorem 15 (Weil's conjectures). *Let* V *be a variety without singular points, and of dimension* n. *Then,*

- (1) (Rationality) $\mathfrak{Z}(V, U)$ is a rational function.
- (2) (Functional equation) The function $\mathfrak{Z}(V, \mathbb{U})$ satisfies the functional equation

$$\mathfrak{Z}(\mathbf{V},\frac{1}{\mathfrak{q}^{\mathfrak{n}}\mathbf{U}}) = \mathfrak{e}\mathfrak{q}^{\mathfrak{n}\chi/2}\mathfrak{U}^{\chi}\mathfrak{Z}(\mathbf{V},\mathbf{U})$$

where $\epsilon = \pm 1$ and χ is the Euler-Poincaré characteristic of V (intersection number of the diagonal with itself on the product V × V).

(3) (Riemann Hypothesis) One can write

$$\mathfrak{Z}(V, U) = \frac{P_1(U)P_3(U)\cdots P_{2n-1}(U)}{P_0(U)P_2(U)\cdots P_{2n}(U)}$$

where $P_0(U) = 1 - U$, $P_{2n}(U) = 1 - q^n U$ and for $1 \le h \le 2n - 1$ we have

$$P_h(U) = \prod_{i=1}^{B_h} (1 - a_{h,i}U)$$

where $\alpha_{h,i}$ are algebraic integers with absolute value $q^{h/2}$.

(4) The degree B_h of P_h called the Betti numbers of the variety B. Then, the Euler-Poincaré characteristic χ can be expressed by

$$\chi = \sum_{h} (-1)^{h} B_{h}$$

6 HISTORY OF WEIL CONJECTURES AND LITERATURE

While writing this section, I realised that I cannot do much justice due to my very limited knowledge. I shall instead share this wonderful commentary written by M. Goresky [Gor18], and also refer to the notes by Tamás Szamuely click here for a proper timeline of the progress on the conjectures. I also found the notes by Hindry [Hin12] (in french) very helpful while preparing for this talk.

REFERENCES

- [Con] Keith Conrad. URL: https://kconrad.math.uconn.edu/blurbs/ gradnumthy/Gauss-Jacobi-sums.pdf.
- [Del77] P. Deligne. *Cohomologie étale*. Vol. 569. Lecture Notes in Mathematics. Séminaire de géométrie algébrique du Bois-Marie SGA 4¹/₂. Springer-Verlag, Berlin, 1977, pp. iv+312. ISBN: 3-540-08066-X; 0-387-08066-X. DOI: 10.1007/BFb0091526. URL: https://doi.org/10.1007/BFb0091526.
- [Dwo60] Bernard Dwork. "On the rationality of the zeta function of an algebraic variety". In: *Amer. J. Math.* 82 (1960), pp. 631–648. ISSN: 0002-9327,1080-6377. DOI: 10.2307/2372974. URL: https://doi.org/10.2307/ 2372974.
- [Gor18] Mark Goresky. "Commentary on "Numbers of solutions of equations in finite fields" by André Weil". In: *Bull. Amer. Math. Soc.* (N.S.) 55.3 (2018), pp. 327–329. ISSN: 0273-0979,1088-9485. DOI: 10.1090/bull/1617. URL: https://doi.org/10.1090/bull/1617.
- [Gro60] Alexander Grothendieck. "The cohomology theory of abstract algebraic varieties". In: Proc. Internat. Congress Math. 1958. Cambridge Univ. Press, New York, 1960, pp. 103–118.
- [Hin12] Marc Hindry. "La preuve par André Weil de l'hypothèse de Riemann pour une courbe sur un corps fini". In: *Henri Cartan & André Weil, mathématiciens du XX^e siècle*. Ed. Éc. Polytech., Palaiseau, 2012, pp. 63–98. ISBN: 978-2-7302-1610-4.

- [IR90] Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number Theory. en. Vol. 84. Graduate Texts in Mathematics. New York, NY: Springer New York, 1990. ISBN: 9781441930941 9781475721034. DOI: 10.1007/978-1-4757-2103-4. URL: http://link.springer.com/10. 1007/978-1-4757-2103-4.
- [M A73] J. L. Verdier M. Artin A. Grothendieck. *Théorie des topos et cohomologie étale des schémas. Tome 3.* Vol. Vol. 305. Lecture Notes in Mathematics. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat. Springer-Verlag, Berlin-New York, 1973, pp. vi+640.
- [Ser58] Jean-Pierre Serre. "Sur la topologie des variétés algébriques en caractéristique p". In: Symposium internacional de topología algebraica International symposium on algebraic topology. Universidad Nacional Autónoma de México and UNESCO, México, 1958, pp. 24–53.
- [Wei48] André Weil. Sur les courbes algébriques et les variétés qui s'en déduisent. Vol. 7 (1945). Publications de l'Institut de Mathématiques de l'Université de Strasbourg [Publications of the Mathematical Institute of the University of Strasbourg]. Actualités Scientifiques et Industrielles, No. 1041. [Current Scientific and Industrial Topics]. Hermann & Cie, Paris, 1948, pp. iv+85.
- [Wei49] André Weil. "Numbers of solutions of equations in finite fields". In: *Bulletin of the American Mathematical Society* 55.5 (1949), pp. 497–508.
- [Wei56] André Weil. "Abstract versus classical algebraic geometry". In: Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III. Erven P. Noordhoff N. V., Groningen, 1956, pp. 550–558.