
Department of Mathematics
Indian Institute of Science

Irish Debbarma

Tate’s thesis: Fourier Analysis on Number Fields

Thesis Advisor: Professor Mahesh Kakde,
Department of Mathematics, IISc Bangalore, India.

Bachelor Thesis Presentation, Dept. of Mathematics, IISc Bangalore, May 1st, 2023



Outline

1 History of zeta and L-functions

2 Ring of adèles and idèles
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History of zeta and L-functions Ring of adèles and idèles Tate’s proof of functional equation

Riemann’s zeta function and Dirichlet’s L-function

1. The Riemann zeta function

ζ(s) =

∞∑
n=1

1

ns

is a priori defined for Re(s) > 1, with Euler product decomposition:

ζ(s) =
∏
p

(1− p−s)−1

2. Let χ : (Z/NZ)× → C be a Dirichlet character. Assume that the
character is extended to all of Z in the usual manner and also that the
character is primitive. Then, we have an associated L-function:

L(s, χ) =
∞∑

n=1

χ(n)

ns

The sum is defined for Re(s) > 0 to begin with. Also, the sum admits an
Euler product decomposition of the form :

L(s, χ) =
∏
p∤N

(1− χ(p)p−s)−1
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Dedekind’s zeta function and Hecke’s L-function

3. If K is a number field (finite extension of Q) with ring of algebraic
integers OK , then we may define a ζ-function attached to K as

ζK(s) =
∑
0 ̸=a

1

Nas

Unique factorisation of fractional ideals yields the Euler product
decomposition:

ζK(s) =
∏
p

(
1− 1

Nps

)−1

4. Hecke proved the analytic continuation of and functional equation for
Dedekind ζ-functions, and for more general class of L-functions

L(s, χ) =
∑

a,(a,m)=1

χ(a)

N (a)s

where χ is what we now call a Hecke character or equivalently a
Größencharactere or an idèle class character of conductor m.
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Adèle ring

To rectify this issue, we define adèle ring using the restricted product topology.
So, the adèle ring (denoted by A) is defined as

A =
∏∐

v∈MQ
(Qv,Zv) := {(xv) ∈

∏
v∈MK

Qv such that xv ∈ Zv for almost all v}

This is a ring with operations

(x∞, x2, x3, . . .) + (y∞, y2, y3, . . .)= (x∞ + y∞, x2 + y2, x3 + y3, . . .)

(x∞, x2, x3, . . .) · (y∞, y2, y3, . . .)= (x∞ · y∞, x2 · y2, x3 · y3, . . .)

This is also a topological ring with basic open sets∏
v

Uv

with Uv open in Qv and Uv = Zv for almost all v.

The projection map x 7→ xv is continuous, and thus it is finer than the
product topology.
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Idèle ring

Now, we are also concerned with the group of units of the adèle ring which we
call idèles. We define the group (denoted by A×) by

A× =
∏∐

v
(Q×

v ,Z×
v )

This is a topological group with basic open sets∏
v

Uv

with Uv open in Q×
v and Uv = Z×

v for almost all v.

This topology is finer than the induced topology.
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Properties of adèle and idèle ring

1. A is locally compact and Hausdorff.

2. Q ↪→ A (diagonal embedding) is discrete, and the quotient A/Q is
compact.

3. Q acts on A by right translation. This lets us define a fundamental domain

A/Q ≃ D := [0, 1)×
∏
p

Zp

OR
A =

⊔
k∈Q

(k +D)

4. Similarly, we can also embed Q× diagonally into A×, and again we can
show that this image is discrete and moreover A×/Q× is compact.

5. Again, we can define a fundamental domain for the action of Q× on A× by

A×/Q× ≃ E := (0,∞)×
∏
p

Zp

OR
A× =

⊔
k∈Q×

kE
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Local measures

Existence of Haar measure

A locally compact group G has a Haar measure unique upto a positive scalar.

As a consequence, the locally compact group Q+
v has a Haar measure.

Let dx be a Haar measure on Q+
v .

Then, d×x =
dx

|x|v
is a Haar measure on Q×

v . We also choose this measure

such that vol(Zp) = 1.

Irish Debbarma Iwasawa-Tate theory Indian Institute of Science, Bangalore
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Local characters

For the local field Qv

The additive group Q+
∞ = R+ is naturally isomorphic to its character

group S1, the isomorphism being given by

y 7→ (x 7→ e2πixy)

When we are looking at Qp, the map ep : Qp → S1 given by

ep

(
∞∑

n=−N

anp
n

)
= exp

(
2πi

−1∑
n=−N

anp
n

)

has the property that if χ : Qp → S1 is a group homomorphism then there
is exactly one a ∈ Qp such that χ(x) = ep(ax)

More compactly, the additive group Q+
v is naturally isomorphic to its

character group Q̂+
v via the map ξ 7→ (η 7→ e2πiΛ(ξη))
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Fourier transforms

Recall the space S(R) of all infinite differentiable functions f : R → C such
that for any two m,n ∈ Z≥0, the function xmf (n)(x) is bounded.

For p a prime, a Schwartz-Bruhat function is a function f : Qp → C that is
locally constant with a compact support. We denote the space of such
functions by S(Qp). Now, we can define the Fourier transform of a function
f ∈ S(Qp) for p ≤ ∞. Let,

f̂(y) =

∫
Qp

f(x)ep(−xy)dx

Fourier inversion formula

There is an unique measure on the character group (dχ the Plancherel
measure) such that the inversion formula

f(x) =

∫
Q̂p

f̂(χ)χ(x)dχ =
̂̂
f(−x)

for “good” enough f .
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Archimedean local zeta function

Recall that f∞(x∞) = e−πx2
∞ is self dual, i.e., f̂∞ = f∞. The Archimedean

local ζ-function is :

ζ(f∞, s) :=

∫
R×

f∞(x∞)|x∞|s∞d×x∞

= 2

∫ ∞

0

e−πx2
∞ |x∞|s∞

dx∞
|x∞|∞

= π−s/2

∫ ∞

0

e−tts/2
dt

t

= π−s/2Γ
( s
2

)
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p-adic local zeta function

Recall that fp = 1Zp is self dual, i.e., f̂p = fp. The non-Archimedean local

ζ-function is :

ζ(fp, s) :=

∫
Q×
p

fp(xp)|xp|spd×xp

=

∫
Z×
p

|xp|sp
p

p− 1

dxp
|xp|p

=
p

p− 1

∑
k≥0

∫
pkZp

|xp|s−1
p dxp

=
p

p− 1

∑
k≥0

pk(s−1)vol(pkZp)

=
p

p− 1

∑
k≥0

pk(s−1) p− 1

p
p−k

=
∑
k≥0

p−ks

= (1− p−s)−1
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Adèlic measure

The Schwartz class of functions S(Afin) is the space of all functions
g : Afin → C which are locally constant and have compact support.
By S(A), we denote the space of all functions of the form

g(x) =
n∑

j=1

hj(xfin)rj(x∞)

where hj ∈ S(Afin) and rj ∈ S(R).
It can be shown that every function f ∈ S(A) can be written as a finite sum of
functions of the form ∏

v∈MQ

fv

with fv ∈ S(Qv) and fp = 1Zp for almost all p.
Since A is a locally compact group, it has a Haar measure which can be
normalised such that for every integrable simple function f =

∏
p fp, one has

the product formula ∫
A
f(x)dx =

∏
p

∫
Qp

fp(xp)dxp
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Adélic characters and Fourier analysis

Theorem

For every x ∈ A, the product

e(x) =
∏

v∈MQ

ep(xp)

has only finitely many factors not equal to 1, i.e., the product is finite. The
ensuing map e : A → S1 is a character.
Moreover, for every character χ : A → S1, there exists an uniquely determined
a ∈ A with χ(x) = e(ax). The map χ 7→ a is the isomorphism of Â to A.

For f ∈ S(A), we define the Fourier transform by:

f̂(y) :=

∫
A
f(x)e(−xy)dx
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Adèlic Fourier analysis

Again, for “good” enough functions, we have the Fourier inversion formula:

Theorem

For every function f ∈ S(A) of the form f =
∏

v∈MQ
fv with fv ∈ S(Qv), one

has
f̂ =

∏
v∈MQ

f̂v

For f ∈ S(A) one has f̂ ∈ S(A) and the inversion formula for the Fourier
transformation is ̂̂

f(x) = f(−x)
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Adèlic zeta function

Let f =
∏
v

fv be the self-dual function. Then,

ζ(f, s) :=

∫
A×

f(x)|x|sd×x

=
∏
v

∫
Q×
v

fv(xv)|xv|sd×xv

= π−s/2Γ(s/2)
∏
p

(1− p−s)−1

The adèlic zeta function just becomes the usual completed zeta function.
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Adèlic Poisson Summation formula

Classical version

For every f ∈ S(R), one has ∑
k∈Z

f(k) =
∑
k∈Z

f̂(k)

Adèlic version

For every f ∈ S(A), one has ∑
q∈Q

f(q) =
∑
q∈Q

f̂(q)

where the series are both absolutely convergent.
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Proof of Poisson summation formula

Proof.

Let F (x) :=
∑

q∈Q f(q + x) and ψ be a Q-invariant character of A. Then,

F̂ (k) =

∫
A/Q≃D

∑
q∈Q

f(x+ q)

ψ(kx)dx

=
∑
q∈Q

∫
D

f(x+ q)ψ(kx)dx

=
∑
q∈Q

∫
D+q

f(x)ψ(k(x− q))dx

=

∫
A
f(x)ψ(kx)dx

= f̂(k)

Now, F (x) =
∑

q∈Q f̂(q)ψ(qx). So, evaluate at x = 0 to obtain the result.
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Adèlic theta function and analytic continuation

Define Θ(x) =
∑

q∈Q f(qx). By applying adélic Poisson summation formula,
one has

Θ(x) =
1

|x|Θ
(
1

x

)
By slicing the integral into Q× classes, one gets

ζ(f, s) =

∫
A×

f(x)|x|sd×x

=

∫
A×/Q×≃E

∑
q∈Q

f(qx)|qx|sd×x

After some manipulation, one obtains

ζ(f, s) + f(0)

∫
A×

|x|sd×x = ζ(f, 1− s) + f(0)

∫
A×

|x|1−sd×x

This is the desired analytic continuation.
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Thank you! Available for questions

Picture of Letter from Iwasawa to Dieudonne, Kenichi Iwasawa, and John Tate.
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