Irish Debbarma

Department of Mathematics Indian Institute of Science

भारतीय विज्ञान संरश्णान

Kubota-Leopoldt p-adic L-functions and p-adic modular forms

Department of Mathematics, IISc Bangalore, India.

Undergraduate Summer Project Presentation, Dept. of Mathematics, IISc Bangalore, August 26th, 2023

Outline

(1) Mellin transform and Bernoulli numbers
(2) p-adic Banach spaces
(3) Amice transform
4) Kummer's congruence
(5) p-adic L-functions

References I

[Cola] Pierre Colmez. Fontaine rings and p-adic L-functions. URL: https://webusers.imj-prg.fr/~pierre.colmez/tsinghua.pdf.
[Colb] Pierre Colmez. La fonction zeta p-adique, M2 cours notes. URL: https://webusers.imj-prg.fr/~pierre.colmez/KubotaLeopodt.pdf.
[Hid93] Haruzo Hida. Elementary Theory of L-functions and Eisenstein Series. 1st ed. Cambridge University Press, Feb. 1993. IsBn: 978052143411997805214356979780511623691 . DOI: 10.1017/CB09780511623691. URL: https://www.cambridge.org/ core/product/identifier/9780511623691/type/book.
[Was97] Lawrence C. Washington. Introduction to Cyclotomic Fields. Vol. 83. Graduate Texts in Mathematics. New York, NY: Springer New York, 1997. ISBN: 97814612734629781461219347 . DOI:
10.1007/978-1-4612-1934-7. URL:
http://link.springer.com/10.1007/978-1-4612-1934-7.

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{C}$ is a C^{∞}-function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

Then, $L(f, s)$ converges to a holomorphic function for $\operatorname{Re}(s)>0$, has an analytic continuation to the entire complex plane, and

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{C}$ is a C^{∞}-function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

$$
\begin{equation*}
L(f, s):=\frac{1}{\Gamma(s)} \int_{0}^{\infty} f(t) t^{s-1} d t, s \in \mathbb{C} \tag{1}
\end{equation*}
$$

$L(f, s)$ as defined above is called the Mellin transform of f.

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{C}$ is a C^{∞}-function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

$$
\begin{equation*}
L(f, s):=\frac{1}{\Gamma(s)} \int_{0}^{\infty} f(t) t^{s-1} d t, s \in \mathbb{C} \tag{1}
\end{equation*}
$$

Then, $L(f, s)$ converges to a holomorphic function for $\operatorname{Re}(s)>0$, has an analytic continuation to the entire complex plane, and

$$
\begin{equation*}
L(f,-n)=(-1)^{n} \frac{d^{n}}{d t^{n}} f(0) \tag{2}
\end{equation*}
$$

$L(f, s)$ as defined above is called the Mellin transform of f.

Bernoulli numbers and ζ-function

Consider the power series expansion of the function

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

B_{n} are called Bernoulli numbers, and

Bernoulli numbers and ζ-function

Consider the power series expansion of the function

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

B_{n} are called Bernoulli numbers, and $B_{n} \in \mathbb{Q}$ with values:

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}
$$

Note that

Bernoulli numbers and ζ-function

Consider the power series expansion of the function

$$
\begin{equation*}
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!} \tag{3}
\end{equation*}
$$

B_{n} are called Bernoulli numbers, and $B_{n} \in \mathbb{Q}$ with values:

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}
$$

Note that

$$
\begin{equation*}
\zeta(s)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} f(t) t^{s-1} \frac{d t}{t}=\frac{1}{s-1} L(f, s-1) \tag{4}
\end{equation*}
$$

continued

Applying lemma to $f(t)=\frac{t}{e^{t}-1}$ we have

Theorem

$\zeta(s)$ has a meromorphic continuation to all of \mathbb{C}. It is holomorphic everywhere except for a simple pole at $s=1$ with residue $L(f, 0)=B_{0}=1$. If $n \geq 2$, then

$$
\zeta(-n)=-\frac{B_{n+1}}{n+1} \in \mathbb{Q}
$$

Kummer's congruence and Kummer's theorem

Kummer
If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# C l\left(\mathbb{Q}\left(\mu_{p}\right)\right)$.

Kummer's congruence and Kummer's theorem

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# C l\left(\mathbb{Q}\left(\mu_{p}\right)\right)$.

The primes p that do not divide the class number of $\mathbb{Q}\left(\mu_{p}\right)$ are known as regular primes and irregular otherwise.

Kummer's congruences

Kummer's congruence and Kummer's theorem

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# C l\left(\mathbb{Q}\left(\mu_{p}\right)\right)$.

The primes p that do not divide the class number of $\mathbb{Q}\left(\mu_{p}\right)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but

Kummer's congruences

Kummer's congruence and Kummer's theorem

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# C l\left(\mathbb{Q}\left(\mu_{p}\right)\right)$.

The primes p that do not divide the class number of $\mathbb{Q}\left(\mu_{p}\right)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Kummer's congruence and Kummer's theorem

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# C l\left(\mathbb{Q}\left(\mu_{p}\right)\right)$.

The primes p that do not divide the class number of $\mathbb{Q}\left(\mu_{p}\right)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences
Let $a \geq 2$ be prime to p. Let $k \geq 1$. If $n_{1}, n_{2} \geq k$ such that $n_{1} \equiv n_{2}$ $\left(\bmod (p-1) p^{k-1}\right)$, then

$$
\left(1-a^{1+n_{1}}\right) \zeta\left(-n_{1}\right) \equiv\left(1-a^{1+n_{2}}\right) \zeta\left(-n_{2}\right) \quad\left(\bmod p^{k}\right)
$$

p-adic Banach spaces

Definition

A p-adic Banach space B is a \mathbb{Q}_{p} vector space with a lattice $B^{0}\left(\mathbb{Z}_{p}\right.$-module) separated and complete for the p-adic topology, i.e.,

$$
B^{0} \simeq{\underset{چ}{n}}^{\lim _{n}^{0}} / p^{n} B^{0}
$$

p-adic Banach spaces

Definition

A p-adic Banach space B is a \mathbb{Q}_{p} vector space with a lattice $B^{0}\left(\mathbb{Z}_{p}\right.$-module) separated and complete for the p-adic topology, i.e.,

$$
B^{0} \simeq{\underset{چ}{n}}^{\lim ^{0}} / p^{n} B^{0}
$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^{n} B^{0}$. We define

$$
v_{B}(x)=\sup _{n \in \mathbb{N} \cup\{\infty\}}\left\{n: x \in p^{n} B^{0}\right\}
$$

p-adic Banach spaces

Definition

A p-adic Banach space B is a \mathbb{Q}_{p} vector space with a lattice B^{0} (\mathbb{Z}_{p}-module) separated and complete for the p-adic topology, i.e.,

$$
B^{0} \simeq{\underset{چ}{n}}^{\lim ^{0}} / p^{n} B^{0}
$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^{n} B^{0}$. We define

$$
v_{B}(x)=\sup _{n \in \mathbb{N} \cup\{\infty\}}\left\{n: x \in p^{n} B^{0}\right\}
$$

It has the properties of a valuation, i.e.,
$: v_{B}(x+y) \geq \min \left\{v_{B}(x), v_{B}(y)\right\}$
: $\quad v_{B}(\lambda x)=v_{p}(\lambda)+v_{B}(x)$ for $\lambda \in \mathbb{Q}_{p}$
Then, $\|x\|_{B}=p^{-v_{B}(x)}$ is a norm on B, and B^{0} is the unit ball.

p-adic Banach spaces

Definition

A p-adic Banach space B is a \mathbb{Q}_{p} vector space with a lattice B^{0} (\mathbb{Z}_{p}-module) separated and complete for the p-adic topology, i.e.,

$$
B^{0} \simeq{\underset{چ}{n}}^{\lim ^{0}} / p^{n} B^{0}
$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^{n} B^{0}$. We define

$$
v_{B}(x)=\sup _{n \in \mathbb{N} \cup\{\infty\}}\left\{n: x \in p^{n} B^{0}\right\}
$$

It has the properties of a valuation, i.e.,
$: v_{B}(x+y) \geq \min \left\{v_{B}(x), v_{B}(y)\right\}$
: $\quad v_{B}(\lambda x)=v_{p}(\lambda)+v_{B}(x)$ for $\lambda \in \mathbb{Q}_{p}$
Then, $\|x\|_{B}=p^{-v_{B}(x)}$ is a norm on B, and B^{0} is the unit ball.

Examples

: $B=\mathbb{C}_{p}$ with $B^{0}=\mathcal{O}_{\mathbb{C}_{p}}$
: $B=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ with $B^{0}=\mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Z}_{p}\right)$

Continuous functions on \mathbb{Z}_{p}

Consider the binomial coefficient:

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

Continuous functions on \mathbb{Z}_{p}

Consider the binomial coefficient:

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_{p}$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_{p}).

Continuous functions on \mathbb{Z}_{p}

Consider the binomial coefficient:

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_{p}$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_{p}).
For $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, set

$$
f^{[0]}=f, f^{[k+1]}(x)=f^{[k]}(x+1)-f^{[k]}(x)
$$

and Mahler's coefficient is

$$
a_{n}(f)=f^{[n]}(0)
$$

Continuous functions on \mathbb{Z}_{p}

Consider the binomial coefficient:

$$
\binom{x}{n}=\frac{x(x-1) \cdots(x-n+1)}{n!}
$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_{p}$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_{p}).
For $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$, set

$$
f^{[0]}=f, f^{[k+1]}(x)=f^{[k]}(x+1)-f^{[k]}(x)
$$

and Mahler's coefficient is

$$
a_{n}(f)=f^{[n]}(0)
$$

Hence,

$$
\begin{aligned}
f^{[n]}(x) & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(x+n-i) \\
a_{n}(f) & =\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} f(n-i)
\end{aligned}
$$

Mahler's theorem

Theorem

If $f \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$, then

1. $\lim _{n \rightarrow \infty} v_{p}\left(a_{n}(f)\right)=+\infty$
2. $\forall x \in \mathbb{Z}_{p}, f(x)=\sum_{n=0}^{\infty} a_{n}(f)\binom{x}{n}$
3. $v_{\mathcal{C}^{0}}(f)=\inf v_{p}\left(a_{n}(f)\right)$

The main thing to note is the second point. Any continuous function f can be written as linear combination of binomial coefficients with the constants tending to 0 (p-adically) as n increases.

Locally constant functions

Say $z \in \mathbb{C}_{p}$ such that $v_{p}(z-1)>0$. Consider

$$
f_{z}(x)=\sum_{n=0}^{\infty}\binom{x}{n}(z-1)^{n} \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)
$$

Since for $k \in \mathbb{N}, f_{z}(k)=z^{k}$, therefore $f_{z}(x)=z^{x}$, moreover $z^{x+y}=z^{x} z^{y}$.

Locally constant functions

Say $z \in \mathbb{C}_{p}$ such that $v_{p}(z-1)>0$. Consider

$$
f_{z}(x)=\sum_{n=0}^{\infty}\binom{x}{n}(z-1)^{n} \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)
$$

Since for $k \in \mathbb{N}, f_{z}(k)=z^{k}$, therefore $f_{z}(x)=z^{x}$, moreover $z^{x+y}=z^{x} z^{y}$. If z is a primitive p-th root of 1 , then

$$
v_{p}(z-1)=\frac{1}{(p-1) p^{n-1}}>0
$$

Note that $z^{x+p^{n}}=z^{x}$ for all x, then z^{x} is locally constant.

Locally constant functions

Say $z \in \mathbb{C}_{p}$ such that $v_{p}(z-1)>0$. Consider

$$
f_{z}(x)=\sum_{n=0}^{\infty}\binom{x}{n}(z-1)^{n} \in \mathcal{C}^{0}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)
$$

Since for $k \in \mathbb{N}, f_{z}(k)=z^{k}$, therefore $f_{z}(x)=z^{x}$, moreover $z^{x+y}=z^{x} z^{y}$. If z is a primitive p-th root of 1 , then

$$
v_{p}(z-1)=\frac{1}{(p-1) p^{n-1}}>0
$$

Note that $z^{x+p^{n}}=z^{x}$ for all x, then z^{x} is locally constant. The characteristic function of $k+p^{n} \mathbb{Z}_{p}$ is given by

$$
\begin{aligned}
\mathbf{1}_{k+p^{n} \mathbb{Z}_{p}}(x) & =\mathbf{1}_{p^{n} \mathbb{Z}_{p}}(x-k) \\
& =\frac{1}{p^{n}} \sum_{z^{p^{n}}=1} z^{x-k} \\
& =\frac{1}{p^{n}} \sum_{z^{p^{n}}=1} z^{x} z^{-k}
\end{aligned}
$$

Amice Transform

Definition

The Amice transform of a measure μ is defined to be the map:

$$
\mu \mapsto A_{\mu}(T)=\int_{\mathbb{Z}_{p}}(1+T)^{x} \mu(x)=\sum_{n=0}^{\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{x}{n} \mu
$$

Theorem

Amice Transform

Definition

The Amice transform of a measure μ is defined to be the map:

$$
\mu \mapsto A_{\mu}(T)=\int_{\mathbb{Z}_{p}}(1+T)^{x} \mu(x)=\sum_{n=0}^{\infty} T^{n} \int_{\mathbb{Z}_{p}}\binom{x}{n} \mu
$$

Theorem

The map $\mu \mapsto A_{\mu}$ is an isometry from $\mathcal{D}^{0}\left(\mathbb{Z}_{p}, \mathbb{Q}_{p}\right)$ to the set
$\left\{\sum_{n=0}^{\infty} b_{n} T^{n}, \mathbb{Q}_{p} \ni b_{n}\right.$ bounded $\}$ with the valuation $v\left(\sum_{n=0}^{\infty} b_{n} T^{n}\right)=\inf _{n \in \mathbb{N}} v_{p}\left(b_{n}\right)$

Properties of Amice Transform

:- Multiplication of a measure by continuous function. For $\mu \in \mathcal{D}^{0}, f \in \mathcal{C}^{0}$, we define the measure $f \mu$ by

$$
\int_{\mathbb{Z}_{p}} g \cdot f \mu=\int_{\mathbb{Z}_{p}} f(x) g(x) \mu(x)
$$

for all $g \in \mathcal{C}^{0}$.

Properties of Amice Transform

:- Multiplication of a measure by continuous function. For $\mu \in \mathcal{D}^{0}, f \in \mathcal{C}^{0}$, we define the measure $f \mu$ by

$$
\int_{\mathbb{Z}_{p}} g \cdot f \mu=\int_{\mathbb{Z}_{p}} f(x) g(x) \mu(x)
$$

for all $g \in \mathcal{C}^{0}$.
:- If $f(x)=x$, then

$$
A_{x \mu}(T)=(1+T) \frac{d}{d T} A_{\mu}
$$

Properties of Amice Transform

:- Multiplication of a measure by continuous function. For $\mu \in \mathcal{D}^{0}, f \in \mathcal{C}^{0}$, we define the measure $f \mu$ by

$$
\int_{\mathbb{Z}_{p}} g \cdot f \mu=\int_{\mathbb{Z}_{p}} f(x) g(x) \mu(x)
$$

for all $g \in \mathcal{C}^{0}$.
:- If $f(x)=x$, then

$$
A_{x \mu}(T)=(1+T) \frac{d}{d T} A_{\mu}
$$

: If $f(x)=z^{x}$, then

$$
A_{z^{x} \mu}(T)=A_{\mu}((1+T) z-1)
$$

Properties of Amice Transform

:- Multiplication of a measure by continuous function. For $\mu \in \mathcal{D}^{0}, f \in \mathcal{C}^{0}$, we define the measure $f \mu$ by

$$
\int_{\mathbb{Z}_{p}} g \cdot f \mu=\int_{\mathbb{Z}_{p}} f(x) g(x) \mu(x)
$$

for all $g \in \mathcal{C}^{0}$.
:- If $f(x)=x$, then

$$
A_{x \mu}(T)=(1+T) \frac{d}{d T} A_{\mu}
$$

:- If $f(x)=z^{x}$, then

$$
A_{z^{x} \mu}(T)=A_{\mu}((1+T) z-1)
$$

:- Actions of φ, ψ. For $\mu \in \mathcal{D}^{0}$, we define the action of φ on μ by

$$
\int_{\mathbb{Z}_{p}} f(x) \varphi(\mu)=\int_{\mathbb{Z}_{p}} f(p x) \mu(x)
$$

Hence, $A_{\varphi(\mu)}(T)=A_{\mu}\left((1+T)^{p}-1\right)=\varphi\left(A_{\mu(T)}\right)$

Properties continued

: We define the action of ψ by

$$
\int_{\mathbb{Z}_{p}} f(x) \psi(\mu)=\int_{\mathbb{Z}_{p}} f(x / p) \mu(x)
$$

Therefore, $A_{\psi(\mu)}=\psi\left(A_{\mu}\right)$. Additionally,

Properties continued

: We define the action of ψ by

$$
\int_{\mathbb{Z}_{p}} f(x) \psi(\mu)=\int_{\mathbb{Z}_{p}} f(x / p) \mu(x)
$$

Therefore, $A_{\psi(\mu)}=\psi\left(A_{\mu}\right)$. Additionally, : $\psi \circ \varphi=\mathrm{Id}$

Properties continued

: We define the action of ψ by

$$
\int_{\mathbb{Z}_{p}} f(x) \psi(\mu)=\int_{\mathbb{Z}_{p}} f(x / p) \mu(x)
$$

Therefore, $A_{\psi(\mu)}=\psi\left(A_{\mu}\right)$. Additionally,
: $\psi \circ \varphi=\mathrm{Id}$
$\therefore \operatorname{Res}_{\mathbb{Z}_{p}^{\times}}(\mu)=(1-\varphi \psi) \mu$

Properties continued

:- We define the action of ψ by

$$
\int_{\mathbb{Z}_{p}} f(x) \psi(\mu)=\int_{\mathbb{Z}_{p}} f(x / p) \mu(x)
$$

Therefore, $A_{\psi(\mu)}=\psi\left(A_{\mu}\right)$. Additionally,
: $\psi \circ \varphi=\mathrm{Id}$
$\therefore \operatorname{Res}_{\mathbb{Z}_{p}^{\times}}(\mu)=(1-\varphi \psi) \mu$
:- Convolution of measures. If λ, μ are two measures, then their convolution $\lambda * \mu$ is defined by

$$
\int_{\mathbb{Z}_{p}} f(x) \lambda * \mu=\int_{\mathbb{Z}_{p}}\left(\int_{\mathbb{Z}_{p}} f(x+y) \mu(x)\right) \lambda(y)
$$

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_{p}^{\times}$, there exists a measure λ_{a} such that

$$
A_{\lambda_{a}}=\int_{\mathbb{Z}_{p}}(1+T)^{x} \lambda_{a}=\frac{1}{T}-\frac{a}{(1+T)^{a}-1}
$$

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_{p}^{\times}$, there exists a measure λ_{a} such that

$$
A_{\lambda_{a}}=\int_{\mathbb{Z}_{p}}(1+T)^{x} \lambda_{a}=\frac{1}{T}-\frac{a}{(1+T)^{a}-1}
$$

Proposition

For every $n \in \mathbb{N}$,

$$
\int_{\mathbb{Z}_{p}} x^{n} \lambda_{a}=(-1)^{n}\left(1-a^{1+n}\right) \zeta(-n)
$$

Corollary

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_{p}^{\times}$, there exists a measure λ_{a} such that

$$
A_{\lambda_{a}}=\int_{\mathbb{Z}_{p}}(1+T)^{x} \lambda_{a}=\frac{1}{T}-\frac{a}{(1+T)^{a}-1}
$$

Proposition

For every $n \in \mathbb{N}$,

$$
\int_{\mathbb{Z}_{p}} x^{n} \lambda_{a}=(-1)^{n}\left(1-a^{1+n}\right) \zeta(-n)
$$

Corollary

For $a \in \mathbb{Z}_{p}^{\times}, k \geq 1, n_{1}, n_{2} \geq k, n_{1} \equiv n_{2}\left(\bmod p^{k-1}(p-1)\right)$, we have

$$
v_{p}\left(1-a^{1+n_{1}}\right) \zeta\left(-n_{1}\right)-\left(1-a^{1+n_{2}}\right) \zeta\left(-n_{2}\right) \geq k
$$

Restriction to \mathbb{Z}_{p}^{\times}

1. $\psi(1 / T)=1 / T$
2. $\psi\left(\lambda_{a}\right)=\lambda_{a}$
3. $\operatorname{Res}_{\mathbb{Z}_{p}^{\times}}\left(\lambda_{a}\right)=(1-\varphi \psi) \lambda_{a}=(1-\varphi) \lambda_{a}$
4. $\int_{\mathbb{Z}_{p}^{\times}} x^{n} \lambda_{a}=\int_{\mathbb{Z}_{p}} x^{n}(1-\varphi) \lambda_{a}=(-1)^{n}\left(1-a^{n+1}\right)\left(1-p^{n}\right) \zeta(-n)$

Leopoldt's Γ-transform

Teichmüller character

For $x \in \mathbb{Z}_{p}^{\times}, \omega(x)=\lim _{n \rightarrow \infty} x^{p^{n}}$

Proposition

Leopoldt's Γ-transform

Teichmüller character

For $x \in \mathbb{Z}_{p}^{\times}, \omega(x)=\lim _{n \rightarrow \infty} x^{p^{n}}$
Key point: Every element $x \in \mathbb{Z}_{p}^{\times}$can be uniquely written as $x=\omega(x)\langle x\rangle$. Moreover, $\omega(x y)=\omega(x) \omega(y)$ and consequently $\langle x y\rangle=\langle x\rangle\langle y\rangle$

Proposition

Leopoldt's Γ-transform

Teichmüller character

For $x \in \mathbb{Z}_{p}^{\times}, \omega(x)=\lim _{n \rightarrow \infty} x^{p^{n}}$
Key point: Every element $x \in \mathbb{Z}_{p}^{\times}$can be uniquely written as $x=\omega(x)\langle x\rangle$.
Moreover, $\omega(x y)=\omega(x) \omega(y)$ and consequently $\langle x y\rangle=\langle x\rangle\langle y\rangle$

Proposition

If λ is a measure on $\mathbb{Z}_{p}^{\times}, u=1+2 p$, then there exists a measure $\Gamma_{\lambda}^{(i)}$ on \mathbb{Z}_{p} (called the Leopoldt transform) such that

$$
A_{\Gamma_{\lambda}^{(i)}}\left(u^{s}-1\right)=\int_{\mathbb{Z}_{p}^{\times}} \omega(x)^{i}\langle x\rangle^{s} \lambda(x)
$$

p-adic ζ-functions

Definition

For $i \in \mathbb{Z} / \phi(2 p) \mathbb{Z}$, and $a \in \mathbb{Z}_{p}^{\times}$such that $\langle a\rangle \neq 1$, we define a function on \mathbb{Z}_{p} as

$$
\zeta_{p, i}=\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} A_{\Gamma_{\lambda_{a}}^{(-i)}}\left(u^{-s}-1\right)
$$

Theorem

p-adic ζ-functions

Definition

For $i \in \mathbb{Z} / \phi(2 p) \mathbb{Z}$, and $a \in \mathbb{Z}_{p}^{\times}$such that $\langle a\rangle \neq 1$, we define a function on \mathbb{Z}_{p} as

$$
\zeta_{p, i}=\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} A_{\Gamma_{\lambda_{a}}^{(-i)}}\left(u^{-s}-1\right)
$$

More explicity,

$$
\zeta_{p, i}=\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} \int_{\mathbb{Z}_{p}^{\times}} \omega(x)^{-i}\langle x\rangle^{-s} \lambda_{a}(x)
$$

Theorem

p-adic ζ-functions

Definition

For $i \in \mathbb{Z} / \phi(2 p) \mathbb{Z}$, and $a \in \mathbb{Z}_{p}^{\times}$such that $\langle a\rangle \neq 1$, we define a function on \mathbb{Z}_{p} as

$$
\zeta_{p, i}=\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} A_{\Gamma_{\lambda_{a}}^{(-i)}}\left(u^{-s}-1\right)
$$

More explicity,

$$
\zeta_{p, i}=\frac{1}{1-\omega(a)^{1-i}\langle a\rangle^{1-s}} \int_{\mathbb{Z}_{p}^{\times}} \omega(x)^{-i}\langle x\rangle^{-s} \lambda_{a}(x)
$$

Theorem

For $i \in \mathbb{Z} / \phi(2 p) \mathbb{Z}$, and $a \in \mathbb{Z}_{p}^{\times}$such that $\langle a\rangle \neq 1$, there exists an unique function $\zeta_{p, i}$, analytic on \mathbb{Z}_{p} if $i \neq 1$, and $(s-1) \zeta_{p, 1}(s)$ is analytic on \mathbb{Z}_{p}, such that

$$
\zeta_{p, i}(-n)=\left(1-p^{n}\right) \zeta(-n)
$$

if $n \equiv-1(\bmod p-1), n \in \mathbb{N}$

p-adic L-functions for Dirichlet characters

Definition

Let $\chi=\theta \eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$
L_{p}(\chi, s):=\int_{\mathbb{Z}_{p}^{\times}} \theta \omega^{-1}(x)\langle x\rangle^{-s} \mu_{\eta}
$$

p-adic L-functions for Dirichlet characters

Definition

Let $\chi=\theta \eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$
L_{p}(\chi, s):=\int_{\mathbb{Z}_{p}^{\times}} \theta \omega^{-1}(x)\langle x\rangle^{-s} \mu_{\eta}
$$

Note that

$$
\zeta_{p, i}(s)=L_{p}\left(\omega^{i}, s\right)
$$

Therefore for arbitrary $k>0$, we have

$$
\zeta_{p, i}(1-k)=\left(1-\omega^{i-k}(p) p^{k-1}\right) L\left(\omega^{i-k}, 1-k\right)
$$

Theorem

p-adic L-functions for Dirichlet characters

Definition

Let $\chi=\theta \eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$
L_{p}(\chi, s):=\int_{\mathbb{Z}_{p}^{\times}} \theta \omega^{-1}(x)\langle x\rangle^{-s} \mu_{\eta}
$$

Note that

$$
\zeta_{p, i}(s)=L_{p}\left(\omega^{i}, s\right)
$$

Therefore for arbitrary $k>0$, we have

$$
\zeta_{p, i}(1-k)=\left(1-\omega^{i-k}(p) p^{k-1}\right) L\left(\omega^{i-k}, 1-k\right)
$$

Theorem

For all $k>0$, one has

$$
L_{p}(\chi, 1-k)=\left(1-\chi \omega^{-k}(p) p^{k-1}\right) L\left(\chi \omega^{-k}, 1-k\right)
$$

p-adic Eisenstein series

The Iwasawa algebra $\Lambda\left(\mathbb{Z}_{p}\right)$ is the space of all L / \mathbb{Q}_{p}-valued measures on \mathbb{Z}_{p} (defined as the dual $\operatorname{Hom}_{\text {cts }}\left(\mathcal{C}\left(\mathbb{Z}_{p}, L\right), L\right)$ equipped with strong topology)

Theorem

Definition

p-adic Eisenstein series

The Inasawa algebra $\Lambda\left(\mathbb{Z}_{p}\right)$ is the space of all L / \mathbb{Q}_{p}-valued measures on \mathbb{Z}_{p} (defined as the dual $\operatorname{Hom}_{\text {cts }}\left(\mathcal{C}\left(\mathbb{Z}_{p}, L\right), L\right)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_{L}-algebra isomorphism

$$
\Lambda\left(\mathbb{Z}_{p}\right) \xrightarrow{\sim} \mathcal{O}_{L}[[T]]
$$

Definition

p-adic Eisenstein series

The Inasawa algebra $\Lambda\left(\mathbb{Z}_{p}\right)$ is the space of all L / \mathbb{Q}_{p}-valued measures on \mathbb{Z}_{p} (defined as the dual $\operatorname{Hom}_{\text {cts }}\left(\mathcal{C}\left(\mathbb{Z}_{p}, L\right), L\right)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_{L}-algebra isomorphism

$$
\Lambda\left(\mathbb{Z}_{p}\right) \xrightarrow{\sim} \mathcal{O}_{L}[[T]]
$$

Recall that for $k \geq 4$ even integers, we have

$$
E_{k}(z):=\frac{\zeta(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

Definition

The n-stabilis tion of E_{n} is defined to be

p-adic Eisenstein series

The Inasawa algebra $\Lambda\left(\mathbb{Z}_{p}\right)$ is the space of all L / \mathbb{Q}_{p}-valued measures on \mathbb{Z}_{p} (defined as the dual $\operatorname{Hom}_{\text {cts }}\left(\mathcal{C}\left(\mathbb{Z}_{p}, L\right), L\right)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_{L}-algebra isomorphism

$$
\Lambda\left(\mathbb{Z}_{p}\right) \xrightarrow{\sim} \mathcal{O}_{L}[[T]]
$$

Recall that for $k \geq 4$ even integers, we have

$$
E_{k}(z):=\frac{\zeta(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}(n) q^{n}
$$

Definition

The p-stabilisation of E_{k} is defined to be

$$
E_{k}^{(p)}(z):=E_{k}(z)-p^{k-1} E_{k}(p z)
$$

Continued

Note that

$$
E_{k}^{(p)}(z):=\frac{\left(1-p^{k-1}\right) \zeta(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}^{p}(n) q^{n}
$$

where

$$
\sigma_{k-1}^{p}(n)=\sum_{d \mid n, p \nmid d} d^{k-1}
$$

Theorem

There exists : power series
such that $a_{n} \in \Lambda\left(\mathbb{Z}_{p}^{\times}\right)$for all $n \geq 1, a_{0}$ is a pseudo-measure and for all $k \geq 4$ and even. we have

Continued

Note that

$$
E_{k}^{(p)}(z):=\frac{\left(1-p^{k-1}\right) \zeta(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}^{p}(n) q^{n}
$$

where

$$
\sigma_{k-1}^{p}(n)=\sum_{d \mid n, p \nmid d} d^{k-1}
$$

Also, $E_{k}^{(p)}(z)$ is a modular form of weight k and level $\Gamma_{0}(p)$

Theorem

There exists a power series
such that $a_{n} \in \Lambda\left(\mathbb{Z}_{p}^{\times}\right)$for all $n \geq 1, a_{0}$ is a pseudo-measure and for all $k \geq 4$ and even, we have

Continued

Note that

$$
E_{k}^{(p)}(z):=\frac{\left(1-p^{k-1}\right) \zeta(1-k)}{2}+\sum_{n \geq 1} \sigma_{k-1}^{p}(n) q^{n}
$$

where

$$
\sigma_{k-1}^{p}(n)=\sum_{d \mid n, p \nmid d} d^{k-1}
$$

Also, $E_{k}^{(p)}(z)$ is a modular form of weight k and level $\Gamma_{0}(p)$

Theorem

There exists a power series

$$
\mathcal{E}(z)=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

such that $a_{n} \in \Lambda\left(\mathbb{Z}_{p}^{\times}\right)$for all $n \geq 1, a_{0}$ is a pseudo-measure and for all $k \geq 4$ and even, we have

$$
\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} \mathcal{E}(z):=\left(\int_{\mathbb{Z}_{p}^{\times}} x^{k-1} a_{n}\right) q^{n}=E_{k}^{(p)}(z)
$$

It's over

Thank you! Always unsure what to write on this slide.

