Irish Debbarma

Department of Mathematics Indian Institute of Science

भारतीय विज्ञान संस्थान

Kubota-Leopoldt *p*-adic *L*-functions and *p*-adic modular forms

Department of Mathematics, IISc Bangalore, India.

Undergraduate Summer Project Presentation, Dept. of Mathematics, IISc Bangalore, August 26th, 2023

Outline

1 Mellin transform and Bernoulli numbers

2 p-adic Banach spaces

3 Amice transform

4 Kummer's congruence

5 *p*-adic *L*-functions

References I

- [Cola] Pierre Colmez. Fontaine rings and p-adic L-functions. URL: https://webusers.imj-prg.fr/~pierre.colmez/tsinghua.pdf.
- [Colb] Pierre Colmez. La fonction zeta p-adique, M2 cours notes. URL: https://webusers.imj-prg.fr/~pierre.colmez/Kubota-Leopodt.pdf.
- [Hid93] Haruzo Hida. Elementary Theory of L-functions and Eisenstein Series. 1st ed. Cambridge University Press, Feb. 1993. ISBN: 9780521434119 9780521435697 9780511623691. DOI: 10.1017/CB09780511623691. URL: https://www.cambridge.org/ core/product/identifier/9780511623691/type/book.
- [Was97] Lawrence C. Washington. Introduction to Cyclotomic Fields. Vol. 83. Graduate Texts in Mathematics. New York, NY: Springer New York, 1997. ISBN: 9781461273462 9781461219347. DOI: 10.1007/978-1-4612-1934-7. URL: http://link.springer.com/10.1007/978-1-4612-1934-7.

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \to \mathbb{C}$ is a C^{∞} -function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

$$L(f,s) := \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} dt, \ s \in \mathbb{C}$$
(1)

Then, L(f,s) converges to a holomorphic function for ${\rm Re}(s)>0,$ has an analytic continuation to the entire complex plane, and

$$L(f, -n) = (-1)^n \frac{d^n}{dt^n} f(0)$$
(2)

L(f, s) as defined above is called the Mellin transform of f.

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \to \mathbb{C}$ is a C^{∞} -function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

$$L(f,s) := \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} dt, \ s \in \mathbb{C}$$
(1)

Then, L(f, s) converges to a holomorphic function for Re(s) > 0, has an analytic continuation to the entire complex plane, and

$$L(f, -n) = (-1)^n \frac{d^n}{dt^n} f(0)$$
(2)

L(f, s) as defined above is called the Mellin transform of f.

Mellin transform

Lemma and definition

If $f: \mathbb{R}_{\geq 0} \to \mathbb{C}$ is a C^{∞} -function on $\mathbb{R}_{\geq 0}$, such that f and all its derivatives decay exponentially at infinity, and

$$L(f,s) := \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} dt, \ s \in \mathbb{C}$$
(1)

Then, L(f,s) converges to a holomorphic function for $\operatorname{Re}(s) > 0$, has an analytic continuation to the entire complex plane, and

$$L(f, -n) = (-1)^n \frac{d^n}{dt^n} f(0)$$
(2)

L(f, s) as defined above is called the Mellin transform of f.

Bernoulli numbers and ζ -function

Consider the power series expansion of the function

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!} \tag{3}$$

 B_n are called Bernoulli numbers, and $B_n \in \mathbb{Q}$ with values:

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}$$

Note that

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} \frac{dt}{t} = \frac{1}{s-1} L(f, s-1)$$
(4)

Bernoulli numbers and ζ -function

Consider the power series expansion of the function

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}$$
(3)

 B_n are called **Bernoulli numbers**, and $B_n \in \mathbb{Q}$ with values:

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}$$

Note that

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} \frac{dt}{t} = \frac{1}{s-1} L(f, s-1)$$
(4)

Bernoulli numbers and ζ -function

Consider the power series expansion of the function

$$\frac{t}{e^t - 1} = \sum_{n=0}^{\infty} B_n \frac{t^n}{n!}$$
(3)

 B_n are called **Bernoulli numbers**, and $B_n \in \mathbb{Q}$ with values:

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0, B_4 = -\frac{1}{30}$$

Note that

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty f(t) t^{s-1} \frac{dt}{t} = \frac{1}{s-1} L(f, s-1)$$
(4)

continued

Applying lemma to
$$f(t) = \frac{t}{e^t - 1}$$
 we have

Theorem

 $\zeta(s)$ has a meromorphic continuation to all of \mathbb{C} . It is holomorphic everywhere except for a simple pole at s = 1 with residue $L(f, 0) = B_0 = 1$. If $n \ge 2$, then

$$\zeta(-n) = -\frac{B_{n+1}}{n+1} \in \mathbb{Q}$$

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# Cl(\mathbb{Q}(\mu_p))$.

The primes p that do not divide the class number of $\mathbb{Q}(\mu_p)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# Cl(\mathbb{Q}(\mu_p))$.

The primes p that do not divide the class number of $\mathbb{Q}(\mu_p)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# Cl(\mathbb{Q}(\mu_p))$.

The primes p that do not divide the class number of $\mathbb{Q}(\mu_p)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# Cl(\mathbb{Q}(\mu_p))$.

The primes p that do not divide the class number of $\mathbb{Q}(\mu_p)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Kummer

If p does not divide the numerator of $\zeta(-3), \zeta(-5), \ldots, \zeta(2-p)$, then $p \nmid \# Cl(\mathbb{Q}(\mu_p))$.

The primes p that do not divide the class number of $\mathbb{Q}(\mu_p)$ are known as regular primes and irregular otherwise. It is know that there are infinitely many irregular primes but the infinitude of of regular primes is still an open problem.

Kummer's congruences

Definition

A *p*-adic Banach space *B* is a \mathbb{Q}_p vector space with a lattice B^0 (\mathbb{Z}_p -module) separated and complete for the *p*-adic topology, i.e.,

$$B^0 \simeq \varprojlim_n B^0 / p^n B^0$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^n B^0$. We define

$$v_B(x) = \sup_{n \in \mathbb{N} \cup \{\infty\}} \{n : x \in p^n B^0\}$$

It has the properties of a valuation, i.e.,

$$v_B(x+y) \ge \min\{v_B(x), v_B(y)\}$$

• $v_B(\lambda x) = v_p(\lambda) + v_B(x)$ for $\lambda \in \mathbb{Q}_p$

Then, $||x||_B = p^{-v_B(x)}$ is a norm on *B*, and *B*⁰ is the unit ball.

Examples

$$B = \mathbb{C}_p$$
 with $B^0 = \mathcal{O}_{\mathbb{C}_p}$

$$B = \mathcal{C}^0(\mathbb{Z}_p,\mathbb{Q}_p)$$
 with $B^0 = \mathcal{C}^0(\mathbb{Z}_p,\mathbb{Z}_p)$

Definition

A *p*-adic Banach space *B* is a \mathbb{Q}_p vector space with a lattice B^0 (\mathbb{Z}_p -module) separated and complete for the *p*-adic topology, i.e.,

$$B^0 \simeq \varprojlim_n B^0 / p^n B^0$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^n B^0$. We define

$$v_B(x) = \sup_{n \in \mathbb{N} \cup \{\infty\}} \{n : x \in p^n B^0\}$$

It has the properties of a valuation, i.e.,

▶
$$v_B(x+y) \ge \min\{v_B(x), v_B(y)\}$$

•
$$v_B(\lambda x) = v_p(\lambda) + v_B(x)$$
 for $\lambda \in \mathbb{Q}_p$

Then, $||x||_B = p^{-v_B(x)}$ is a norm on B, and B^0 is the unit ball.

Examples

$$B = \mathbb{C}_p$$
 with $B^0 = \mathcal{O}_{\mathbb{C}_r}$

$$B = \mathcal{C}^0(\mathbb{Z}_p,\mathbb{Q}_p)$$
 with $B^0 = \mathcal{C}^0(\mathbb{Z}_p,\mathbb{Z}_p)$

Definition

A *p*-adic Banach space *B* is a \mathbb{Q}_p vector space with a lattice B^0 (\mathbb{Z}_p -module) separated and complete for the *p*-adic topology, i.e.,

$$B^0 \simeq \varprojlim_n B^0 / p^n B^0$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^n B^0$. We define

$$v_B(x) = \sup_{n \in \mathbb{N} \cup \{\infty\}} \{n : x \in p^n B^0\}$$

It has the properties of a valuation, i.e.,

$$\begin{array}{l} v_B(x+y) \geq \min\{v_B(x), v_B(y)\} \\ v_B(\lambda x) = v_p(\lambda) + v_B(x) \text{ for } \lambda \in \mathbb{Q}_p \\ \\ \text{Then, } ||x||_B = p^{-v_B(x)} \text{ is a norm on } B, \text{ and } B^0 \text{ is the unit ball.} \end{array}$$

Examples

$$B = \mathbb{C}_n$$
 with $B^0 = \mathcal{O}_{\mathbb{C}}$.

$$B = \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p)$$
 with $B^0 = \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Z}_p)$

Definition

A *p*-adic Banach space *B* is a \mathbb{Q}_p vector space with a lattice B^0 (\mathbb{Z}_p -module) separated and complete for the *p*-adic topology, i.e.,

$$B^0 \simeq \varprojlim_n B^0 / p^n B^0$$

For each $x \in B$, there is a $n \in \mathbb{N}$ such that $x \in p^n B^0$. We define

$$v_B(x) = \sup_{n \in \mathbb{N} \cup \{\infty\}} \{n : x \in p^n B^0\}$$

It has the properties of a valuation, i.e.,

$$v_B(x+y) \ge \min\{v_B(x), v_B(y)\}$$

$$v_B(\lambda x) = v_p(\lambda) + v_B(x) \text{ for } \lambda \in \mathbb{Q}_p$$

Then, $||x||_B = p^{-v_B(x)}$ is a norm on B , and B^0 is the unit ball.

Examples

 $B = \mathbb{C}_p \text{ with } B^0 = \mathcal{O}_{\mathbb{C}_p}$

$$B = \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p) \text{ with } B^0 = \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Z}_p)$$

Consider the binomial coefficient:

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_p$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_p). For $f \in C^0(\mathbb{Z}_p, \mathbb{Q}_p)$, set

$$f^{[0]} = f, f^{[k+1]}(x) = f^{[k]}(x+1) - f^{[k]}(x)$$

and Mahler's coefficient is

$$a_n(f) = f^{[n]}(0)$$

$$f^{[n]}(x) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(x+n-i)$$
$$a_{n}(f) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(n-i)$$

Consider the binomial coefficient:

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_p$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_p). For $f \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p)$, set

$$f^{[0]} = f, f^{[k+1]}(x) = f^{[k]}(x+1) - f^{[k]}(x)$$

and Mahler's coefficient is

 $a_n(f) = f^{[n]}(0)$

$$f^{[n]}(x) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(x+n-i)$$
$$a_{n}(f) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(n-i)$$

Consider the binomial coefficient:

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_p$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_p). For $f \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p)$, set

$$f^{[0]} = f, \ f^{[k+1]}(x) = f^{[k]}(x+1) - f^{[k]}(x)$$

and Mahler's coefficient is

$$a_n(f) = f^{[n]}(0)$$

$$f^{[n]}(x) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(x+n-i)$$
$$a_{n}(f) = \sum_{i=0}^{n} (-1)^{i} {n \choose i} f(n-i)$$

Consider the binomial coefficient:

$$\binom{x}{n} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$

It is easy to see that $\binom{x}{n} \in \mathbb{Z}_p$ (Hint: Look at what happens for $x \in \mathbb{N}$ and observe that \mathbb{N} is dense in \mathbb{Z}_p). For $f \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{Q}_p)$, set

$$f^{[0]} = f, f^{[k+1]}(x) = f^{[k]}(x+1) - f^{[k]}(x)$$

and Mahler's coefficient is

$$a_n(f) = f^{[n]}(0)$$

$$f^{[n]}(x) = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} f(x+n-i)$$
$$a_{n}(f) = \sum_{i=0}^{n} (-1)^{i} \binom{n}{i} f(n-i)$$

Mahler's theorem

Theorem

If $f \in \mathcal{C}^0(\mathbb{Z}_p,\mathbb{C}_p)$, then

1. $\lim_{n \to \infty} v_p(a_n(f)) = +\infty$

2.
$$\forall x \in \mathbb{Z}_p, f(x) = \sum_{n=0}^{\infty} a_n(f) \begin{pmatrix} x \\ n \end{pmatrix}$$

3. $v_{\mathcal{C}^0}(f) = \inf v_p(a_n(f))$

The main thing to note is the second point. Any continuous function f can be written as linear combination of binomial coefficients with the constants tending to 0 (p-adically) as n increases.

Locally constant functions

Say $z \in \mathbb{C}_p$ such that $v_p(z-1) > 0$. Consider

$$f_z(x) = \sum_{n=0}^{\infty} {\binom{x}{n}} (z-1)^n \in \mathcal{C}^0(\mathbb{Z}_p, \mathbb{C}_p)$$

Since for $k \in \mathbb{N}$, $f_z(k) = z^k$, therefore $f_z(x) = z^x$, moreover $z^{x+y} = z^x z^y$. If z is a primitive p-th root of 1, then

$$v_p(z-1) = \frac{1}{(p-1)p^{n-1}} > 0$$

Note that $z^{x+p^n} = z^x$ for all x, then z^x is locally constant. The characteristic function of $k + p^n \mathbb{Z}_p$ is given by

$$\begin{aligned} \mathbf{1}_{k+p^{n}\mathbb{Z}_{p}}(x) &= \mathbf{1}_{p^{n}\mathbb{Z}_{p}}(x-k) \\ &= \frac{1}{p^{n}} \sum_{z^{p^{n}}=1} z^{x-k} \\ &= \frac{1}{p^{n}} \sum_{z^{p^{n}}=1} z^{x} z^{-l} \end{aligned}$$

Locally constant functions

Say $z \in \mathbb{C}_p$ such that $v_p(z-1) > 0$. Consider

$$f_{z}(x) = \sum_{n=0}^{\infty} {\binom{x}{n}} (z-1)^{n} \in \mathcal{C}^{0}(\mathbb{Z}_{p}, \mathbb{C}_{p})$$

Since for $k \in \mathbb{N}$, $f_z(k) = z^k$, therefore $f_z(x) = z^x$, moreover $z^{x+y} = z^x z^y$. If z is a primitive p-th root of 1, then

$$v_p(z-1) = \frac{1}{(p-1)p^{n-1}} > 0$$

Note that $z^{x+p^n} = z^x$ for all x, then z^x is locally constant. The characteristic function of $k + p^n \mathbb{Z}_p$ is given by

$$\begin{aligned} \mathbf{1}_{k+p^{n}\mathbb{Z}_{p}}(x) &= \mathbf{1}_{p^{n}\mathbb{Z}_{p}}(x-k) \\ &= \frac{1}{p^{n}}\sum_{z^{p^{n}}=1} z^{x-k} \\ &= \frac{1}{p^{n}}\sum_{z^{p^{n}}=1} z^{x} z^{-k} \end{aligned}$$

Locally constant functions

Say $z \in \mathbb{C}_p$ such that $v_p(z-1) > 0$. Consider

$$f_{z}(x) = \sum_{n=0}^{\infty} {\binom{x}{n}} (z-1)^{n} \in \mathcal{C}^{0}(\mathbb{Z}_{p}, \mathbb{C}_{p})$$

Since for $k \in \mathbb{N}$, $f_z(k) = z^k$, therefore $f_z(x) = z^x$, moreover $z^{x+y} = z^x z^y$. If z is a primitive p-th root of 1, then

$$v_p(z-1) = \frac{1}{(p-1)p^{n-1}} > 0$$

Note that $z^{x+p^n} = z^x$ for all x, then z^x is locally constant. The characteristic function of $k + p^n \mathbb{Z}_p$ is given by

$$\begin{aligned} \mathbf{1}_{k+p^n \mathbb{Z}_p}(x) &= \mathbf{1}_{p^n \mathbb{Z}_p}(x-k) \\ &= \frac{1}{p^n} \sum_{z p^n = 1} z^{x-k} \\ &= \frac{1}{p^n} \sum_{z p^n = 1} z^x z^{-k} \end{aligned}$$

Amice Transform

Definition

The Amice transform of a measure μ is defined to be the map:

$$\mu \mapsto A_{\mu}(T) = \int_{\mathbb{Z}_p} (1+T)^x \mu(x) = \sum_{n=0}^{\infty} T^n \int_{\mathbb{Z}_p} \binom{x}{n} \mu$$

Theorem

The map
$$\mu \mapsto A_{\mu}$$
 is an isometry from $\mathcal{D}^{0}(\mathbb{Z}_{p}, \mathbb{Q}_{p})$ to the set $\{\sum_{n=0}^{\infty} b_{n} T^{n}, \mathbb{Q}_{p} \ni b_{n} \text{ bounded }\}$ with the valuation $v\left(\sum_{n=0}^{\infty} b_{n} T^{n}\right) = \inf_{n \in \mathbb{N}} v_{p}(b_{n})$

Amice Transform

Definition

The Amice transform of a measure μ is defined to be the map:

$$\mu \mapsto A_{\mu}(T) = \int_{\mathbb{Z}_p} (1+T)^x \mu(x) = \sum_{n=0}^{\infty} T^n \int_{\mathbb{Z}_p} \binom{x}{n} \mu$$

Theorem

The map
$$\mu \mapsto A_{\mu}$$
 is an isometry from $\mathcal{D}^{0}(\mathbb{Z}_{p}, \mathbb{Q}_{p})$ to the set $\{\sum_{n=0}^{\infty} b_{n} T^{n}, \mathbb{Q}_{p} \ni b_{n} \text{ bounded } \}$ with the valuation $v\left(\sum_{n=0}^{\infty} b_{n} T^{n}\right) = \inf_{n \in \mathbb{N}} v_{p}(b_{n})$

Multiplication of a measure by continuous function. For $\mu \in D^0, f \in C^0$, we define the measure $f\mu$ by

$$\int_{\mathbb{Z}_p} g \cdot f\mu = \int_{\mathbb{Z}_p} f(x)g(x)\mu(x)$$

for all $g \in C^0$.

If f(x) = x, then

$$A_{x\mu}(T) = (1+T)\frac{d}{dT}A_{\mu}$$

If $f(x) = z^x$, then

 $A_{z^{x}\mu}(T) = A_{\mu}((1+T)z - 1)$

P Actions of φ, ψ . For $\mu \in \mathcal{D}^0$, we define the action of φ on μ by

$$\int_{\mathbb{Z}_p} f(x)\varphi(\mu) = \int_{\mathbb{Z}_p} f(px)\mu(x)$$

Multiplication of a measure by continuous function. For $\mu \in D^0, f \in C^0$, we define the measure $f\mu$ by

$$\int_{\mathbb{Z}_p} g \cdot f\mu = \int_{\mathbb{Z}_p} f(x)g(x)\mu(x)$$

for all $g \in C^0$.

If f(x) = x, then

$$A_{x\mu}(T) = (1+T)\frac{d}{dT}A_{\mu}$$

If $f(x) = z^x$, then

 $A_{z^{x}\mu}(T) = A_{\mu}((1+T)z - 1)$

P Actions of φ, ψ . For $\mu \in \mathcal{D}^0$, we define the action of φ on μ by

$$\int_{\mathbb{Z}_p} f(x)\varphi(\mu) = \int_{\mathbb{Z}_p} f(px)\mu(x)$$

• Multiplication of a measure by continuous function. For $\mu \in \mathcal{D}^0, f \in \mathcal{C}^0$, we define the measure $f\mu$ by

$$\int_{\mathbb{Z}_p} g \cdot f\mu = \int_{\mathbb{Z}_p} f(x)g(x)\mu(x)$$

for all $g \in C^0$.

If f(x) = x, then

$$A_{x\mu}(T) = (1+T)\frac{d}{dT}A_{\mu}$$

If $f(x) = z^x$, then

$$A_{z^{x}\mu}(T) = A_{\mu}((1+T)z - 1)$$

P Actions of φ, ψ . For $\mu \in \mathcal{D}^0$, we define the action of φ on μ by

$$\int_{\mathbb{Z}_p} f(x)\varphi(\mu) = \int_{\mathbb{Z}_p} f(px)\mu(x)$$

• Multiplication of a measure by continuous function. For $\mu \in D^0, f \in C^0$, we define the measure $f\mu$ by

$$\int_{\mathbb{Z}_p} g \cdot f\mu = \int_{\mathbb{Z}_p} f(x)g(x)\mu(x)$$

for all $g \in C^0$.

If f(x) = x, then

$$A_{x\mu}(T) = (1+T)\frac{d}{dT}A_{\mu}$$

If $f(x) = z^x$, then

$$A_{z^{x}\mu}(T) = A_{\mu}((1+T)z - 1)$$

b Actions of φ, ψ . For $\mu \in \mathcal{D}^0$, we define the action of φ on μ by

$$\int_{\mathbb{Z}_p} f(x)\varphi(\mu) = \int_{\mathbb{Z}_p} f(px)\mu(x)$$

• We define the action of ψ by

$$\int_{\mathbb{Z}_p} f(x)\psi(\mu) = \int_{\mathbb{Z}_p} f(x/p)\mu(x)$$

Therefore, $A_{\psi(\mu)} = \psi(A_{\mu})$. Additionally,

 $\psi \circ \varphi = \mathrm{Id}$

$$\operatorname{Res}_{\mathbb{Z}_p^{\times}}(\mu) = (1 - \varphi \psi) \mu$$

Convolution of measures. If λ, μ are two measures, then their convolution $\lambda * \mu$ is defined by

$$\int_{\mathbb{Z}_p} f(x)\lambda * \mu = \int_{\mathbb{Z}_p} \left(\int_{\mathbb{Z}_p} f(x+y)\mu(x) \right) \lambda(y)$$

• We define the action of ψ by

$$\int_{\mathbb{Z}_p} f(x)\psi(\mu) = \int_{\mathbb{Z}_p} f(x/p)\mu(x)$$

Therefore, $A_{\psi(\mu)} = \psi(A_{\mu})$. Additionally,

 $\psi \circ \varphi = \mathrm{Id}$

$$\operatorname{Res}_{\mathbb{Z}_n^{\times}}(\mu) = (1 - \varphi \psi) \mu$$

Convolution of measures. If λ, μ are two measures, then their convolution $\lambda * \mu$ is defined by

$$\int_{\mathbb{Z}_p} f(x)\lambda * \mu = \int_{\mathbb{Z}_p} \left(\int_{\mathbb{Z}_p} f(x+y)\mu(x) \right) \lambda(y)$$

• We define the action of ψ by

$$\int_{\mathbb{Z}_p} f(x)\psi(\mu) = \int_{\mathbb{Z}_p} f(x/p)\mu(x)$$

Therefore, $A_{\psi(\mu)} = \psi(A_{\mu})$. Additionally,

 $\psi \circ \varphi = \mathrm{Id}$

$$\operatorname{Res}_{\mathbb{Z}_p^{\times}}(\mu) = (1 - \varphi \psi)\mu$$

Convolution of measures. If λ, μ are two measures, then their convolution $\lambda * \mu$ is defined by

$$\int_{\mathbb{Z}_p} f(x)\lambda * \mu = \int_{\mathbb{Z}_p} \left(\int_{\mathbb{Z}_p} f(x+y)\mu(x) \right) \lambda(y)$$

• We define the action of ψ by

$$\int_{\mathbb{Z}_p} f(x)\psi(\mu) = \int_{\mathbb{Z}_p} f(x/p)\mu(x)$$

Therefore, $A_{\psi(\mu)} = \psi(A_{\mu})$. Additionally,

 $\psi \circ \varphi = \operatorname{Id}$

$$\operatorname{Res}_{\mathbb{Z}_p^{\times}}(\mu) = (1 - \varphi \psi)\mu$$

b Convolution of measures. If λ, μ are two measures, then their convolution $\lambda * \mu$ is defined by

$$\int_{\mathbb{Z}_p} f(x)\lambda * \mu = \int_{\mathbb{Z}_p} \left(\int_{\mathbb{Z}_p} f(x+y)\mu(x) \right) \lambda(y)$$

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_p^{\times}$, there exists a measure λ_a such that

$$A_{\lambda_{a}} = \int_{\mathbb{Z}_{p}} (1+T)^{x} \lambda_{a} = \frac{1}{T} - \frac{a}{(1+T)^{a} - 1}$$

Proposition

For every $n \in \mathbb{N}$,

$$\int_{\mathbb{Z}_p} x^n \lambda_a = (-1)^n (1 - a^{1+n}) \zeta(-n)$$

Corollary

For $a \in \mathbb{Z}_p^{\times}$, $k \ge 1, n_1, n_2 \ge k, n_1 \equiv n_2 \pmod{p^{k-1}(p-1)}$, we have

 $v_p(1-a^{1+n_1})\zeta(-n_1) - (1-a^{1+n_2})\zeta(-n_2) \ge k$

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_p^{\times}$, there exists a measure λ_a such that

$$A_{\lambda_{a}} = \int_{\mathbb{Z}_{p}} (1+T)^{x} \lambda_{a} = \frac{1}{T} - \frac{a}{(1+T)^{a} - 1}$$

Proposition

For every $n \in \mathbb{N}$,

$$\int_{\mathbb{Z}_p} x^n \lambda_a = (-1)^n (1 - a^{1+n}) \zeta(-n)$$

Corollary

For $a \in \mathbb{Z}_p^{\times}$, $k \ge 1, n_1, n_2 \ge k, n_1 \equiv n_2 \pmod{p^{k-1}(p-1)}$, we have

 $v_p(1-a^{1+n_1})\zeta(-n_1) - (1-a^{1+n_2})\zeta(-n_2) \ge k$

Kummer's congruence proof

Lemma

For $a \in \mathbb{Z}_p^{\times}$, there exists a measure λ_a such that

$$A_{\lambda_{a}} = \int_{\mathbb{Z}_{p}} (1+T)^{x} \lambda_{a} = \frac{1}{T} - \frac{a}{(1+T)^{a} - 1}$$

Proposition

For every $n \in \mathbb{N}$,

$$\int_{\mathbb{Z}_p} x^n \lambda_a = (-1)^n (1 - a^{1+n}) \zeta(-n)$$

Corollary

For $a \in \mathbb{Z}_p^{\times}$, $k \ge 1, n_1, n_2 \ge k, n_1 \equiv n_2 \pmod{p^{k-1}(p-1)}$, we have

$$v_p(1-a^{1+n_1})\zeta(-n_1) - (1-a^{1+n_2})\zeta(-n_2) \ge k$$

Restriction to \mathbb{Z}_p^{\times}

1.
$$\psi(1/T) = 1/T$$

2. $\psi(\lambda_a) = \lambda_a$
3. $\operatorname{Res}_{\mathbb{Z}_p^{\times}}(\lambda_a) = (1 - \varphi\psi)\lambda_a = (1 - \varphi)\lambda_a$
4. $\int_{\mathbb{Z}_p^{\times}} x^n \lambda_a = \int_{\mathbb{Z}_p} x^n (1 - \varphi)\lambda_a = (-1)^n (1 - a^{n+1})(1 - p^n)\zeta(-n)$

Leopoldt's Γ -transform

Teichmüller character

For $x \in \mathbb{Z}_p^{\times}, \omega(x) = \lim_{n \to \infty} x^{p^n}$

Key point: Every element $x \in \mathbb{Z}_p^{\times}$ can be uniquely written as $x = \omega(x)\langle x \rangle$. Moreover, $\omega(xy) = \omega(x)\omega(y)$ and consequently $\langle xy \rangle = \langle x \rangle \langle y \rangle$

Proposition

If λ is a measure on \mathbb{Z}_p^{\times} , u = 1 + 2p, then there exists a measure $\Gamma_{\lambda}^{(i)}$ on \mathbb{Z}_p (called the Leopoldt transform) such that

$$A_{\Gamma_{\lambda}^{(i)}}(u^s-1) = \int_{\mathbb{Z}_p^{\times}} \omega(x)^i \langle x \rangle^s \lambda(x)$$

Leopoldt's Γ -transform

Teichmüller character

For $x \in \mathbb{Z}_p^{\times}, \omega(x) = \lim_{n \to \infty} x^{p^n}$

Key point: Every element $x \in \mathbb{Z}_p^{\times}$ can be uniquely written as $x = \omega(x)\langle x \rangle$. Moreover, $\omega(xy) = \omega(x)\omega(y)$ and consequently $\langle xy \rangle = \langle x \rangle \langle y \rangle$

Proposition

If λ is a measure on \mathbb{Z}_p^{\times} , u = 1 + 2p, then there exists a measure $\Gamma_{\lambda}^{(i)}$ on \mathbb{Z}_p (called the Leopoldt transform) such that

$$A_{\Gamma^{(i)}_{\lambda}}(u^s-1) = \int_{\mathbb{Z}_p^{\times}} \omega(x)^i \langle x \rangle^s \lambda(x)$$

Leopoldt's Γ -transform

Teichmüller character

For $x \in \mathbb{Z}_p^{\times}, \omega(x) = \lim_{n \to \infty} x^{p^n}$

Key point: Every element $x \in \mathbb{Z}_p^{\times}$ can be uniquely written as $x = \omega(x)\langle x \rangle$. Moreover, $\omega(xy) = \omega(x)\omega(y)$ and consequently $\langle xy \rangle = \langle x \rangle \langle y \rangle$

Proposition

If λ is a measure on \mathbb{Z}_p^{\times} , u = 1 + 2p, then there exists a measure $\Gamma_{\lambda}^{(i)}$ on \mathbb{Z}_p (called the Leopoldt transform) such that

$$A_{\Gamma^{(i)}_{\lambda}}(u^s-1) = \int_{\mathbb{Z}_p^{\times}} \omega(x)^i \langle x \rangle^s \lambda(x)$$

p-adic ζ -functions

Definition

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, we define a function on \mathbb{Z}_p as

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} A_{\Gamma_{\lambda_a}^{(-i)}}(u^{-s} - 1)$$

More explicity,

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} \int_{\mathbb{Z}_p^{\times}} \omega(x)^{-i} \langle x \rangle^{-s} \lambda_a(x)$$

Theorem

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, there exists an unique function $\zeta_{p,i}$, analytic on \mathbb{Z}_p if $i \neq 1$, and $(s-1)\zeta_{p,1}(s)$ is analytic on \mathbb{Z}_p , such that

$$\zeta_{p,i}(-n) = (1-p^n)\zeta(-n)$$

if $n \equiv -1 \pmod{p-1}, n \in \mathbb{N}$

p-adic ζ -functions

Definition

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, we define a function on \mathbb{Z}_p as

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} A_{\Gamma_{\lambda_a}^{(-i)}}(u^{-s} - 1)$$

More explicity,

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} \int_{\mathbb{Z}_p^{\times}} \omega(x)^{-i} \langle x \rangle^{-s} \lambda_a(x)$$

Theorem

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, there exists an unique function $\zeta_{p,i}$, analytic on \mathbb{Z}_p if $i \neq 1$, and $(s-1)\zeta_{p,1}(s)$ is analytic on \mathbb{Z}_p , such that

$$\zeta_{p,i}(-n) = (1-p^n)\zeta(-n)$$

if $n \equiv -1 \pmod{p-1}, n \in \mathbb{N}$

p-adic ζ -functions

Definition

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, we define a function on \mathbb{Z}_p as

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} A_{\Gamma_{\lambda_a}^{(-i)}}(u^{-s} - 1)$$

More explicity,

$$\zeta_{p,i} = \frac{1}{1 - \omega(a)^{1-i} \langle a \rangle^{1-s}} \int_{\mathbb{Z}_p^{\times}} \omega(x)^{-i} \langle x \rangle^{-s} \lambda_a(x)$$

Theorem

For $i \in \mathbb{Z}/\phi(2p)\mathbb{Z}$, and $a \in \mathbb{Z}_p^{\times}$ such that $\langle a \rangle \neq 1$, there exists an unique function $\zeta_{p,i}$, analytic on \mathbb{Z}_p if $i \neq 1$, and $(s-1)\zeta_{p,1}(s)$ is analytic on \mathbb{Z}_p , such that

$$\zeta_{p,i}(-n) = (1-p^n)\zeta(-n)$$

if $n \equiv -1 \pmod{p-1}$, $n \in \mathbb{N}$

p-adic *L*-functions for Dirichlet characters

Definition

Let $\chi=\theta\eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$L_p(\chi,s) := \int_{\mathbb{Z}_p^{ imes}} heta \omega^{-1}(x) \langle x
angle^{-s} \mu_\eta$$

Note that

$$\zeta_{p,i}(s) = L_p(\omega^i, s)$$

Therefore for arbitrary k > 0, we have

$$\zeta_{p,i}(1-k) = (1-\omega^{i-k}(p)p^{k-1})L(\omega^{i-k}, 1-k)$$

Theorem

For all k > 0, one has

$$L_p(\chi, 1-k) = (1-\chi\omega^{-k}(p)p^{k-1})L(\chi\omega^{-k}, 1-k)$$

p-adic *L*-functions for Dirichlet characters

Definition

Let $\chi=\theta\eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$L_p(\chi,s) := \int_{\mathbb{Z}_p^{\times}} \theta \omega^{-1}(x) \langle x \rangle^{-s} \mu_{\eta}$$

Note that

$$\zeta_{p,i}(s) = L_p(\omega^i, s)$$

Therefore for arbitrary k > 0, we have

$$\zeta_{p,i}(1-k) = (1 - \omega^{i-k}(p)p^{k-1})L(\omega^{i-k}, 1-k)$$

Theorem

For all k > 0, one has

$$L_p(\chi, 1-k) = (1-\chi\omega^{-k}(p)p^{k-1})L(\chi\omega^{-k}, 1-k)$$

p-adic *L*-functions for Dirichlet characters

Definition

Let $\chi=\theta\eta$ be a Dirichlet character, where η has conductor D prime to p and θ has conductor power of p. We define

$$L_p(\chi, s) := \int_{\mathbb{Z}_p^{\times}} \theta \omega^{-1}(x) \langle x \rangle^{-s} \mu_{\eta}$$

Note that

$$\zeta_{p,i}(s) = L_p(\omega^i, s)$$

Therefore for arbitrary k > 0, we have

$$\zeta_{p,i}(1-k) = (1 - \omega^{i-k}(p)p^{k-1})L(\omega^{i-k}, 1-k)$$

Theorem

For all k > 0, one has

$$L_p(\chi, 1-k) = (1 - \chi \omega^{-k}(p)p^{k-1})L(\chi \omega^{-k}, 1-k)$$

The **Iwasawa algebra** $\Lambda(\mathbb{Z}_p)$ is the space of all L/\mathbb{Q}_p -valued measures on \mathbb{Z}_p (defined as the dual $\operatorname{Hom}_{cts}(\mathcal{C}(\mathbb{Z}_p, L), L)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_L -algebra isomorphism

 $\Lambda(\mathbb{Z}_p) \xrightarrow{\sim} \mathcal{O}_L[[T]]$

Recall that for $k \ge 4$ even integers, we have

$$E_k(z) := \frac{\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$

Definition

$$E_k^{(p)}(z) := E_k(z) - p^{k-1}E_k(pz)$$

The **Iwasawa algebra** $\Lambda(\mathbb{Z}_p)$ is the space of all L/\mathbb{Q}_p -valued measures on \mathbb{Z}_p (defined as the dual $\operatorname{Hom}_{cts}(\mathcal{C}(\mathbb{Z}_p, L), L)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_L -algebra isomorphism

 $\Lambda(\mathbb{Z}_p) \xrightarrow{\sim} \mathcal{O}_L[[T]]$

Recall that for $k \ge 4$ even integers, we have

$$E_k(z) := \frac{\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$

Definition

$$E_k^{(p)}(z) := E_k(z) - p^{k-1}E_k(pz)$$

The **Iwasawa algebra** $\Lambda(\mathbb{Z}_p)$ is the space of all L/\mathbb{Q}_p -valued measures on \mathbb{Z}_p (defined as the dual $\operatorname{Hom}_{cts}(\mathcal{C}(\mathbb{Z}_p, L), L)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_L -algebra isomorphism

 $\Lambda(\mathbb{Z}_p) \xrightarrow{\sim} \mathcal{O}_L[[T]]$

Recall that for $k \geq 4$ even integers, we have

$$E_k(z) := \frac{\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$

Definition

$$E_k^{(p)}(z) := E_k(z) - p^{k-1}E_k(pz)$$

The **Iwasawa algebra** $\Lambda(\mathbb{Z}_p)$ is the space of all L/\mathbb{Q}_p -valued measures on \mathbb{Z}_p (defined as the dual $\operatorname{Hom}_{cts}(\mathcal{C}(\mathbb{Z}_p, L), L)$ equipped with strong topology)

Theorem

The Amice transform gives an \mathcal{O}_L -algebra isomorphism

 $\Lambda(\mathbb{Z}_p) \xrightarrow{\sim} \mathcal{O}_L[[T]]$

Recall that for $k\geq 4$ even integers, we have

$$E_k(z) := \frac{\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}(n) q^n$$

Definition

$$E_k^{(p)}(z) := E_k(z) - p^{k-1}E_k(pz)$$

Continued

Note that

$$E_k^{(p)}(z) := \frac{(1-p^{k-1})\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}^p(n)q^n$$

where

$$\sigma_{k-1}^p(n) = \sum_{d \mid n, p \nmid d} d^{k-1}$$

Also, $E_k^{(p)}(z)$ is a modular form of weight k and level $\Gamma_0(p)$

Theorem

There exists a power series

$$\mathcal{E}(z) = \sum_{n=0}^{\infty} a_n q^n$$

such that $a_n\in \Lambda(\mathbb{Z}_p^{ imes})$ for all $n\geq 1$, a_0 is a pseudo-measure and for all $k\geq 4$ and even, we have

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \mathcal{E}(z) := \left(\int_{\mathbb{Z}_p^{\times}} x^{k-1} a_n \right) q^n = E_k^{(p)}(z)$$

Continued

Note that

$$E_k^{(p)}(z) := \frac{(1-p^{k-1})\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}^p(n)q^n$$

where

$$\sigma_{k-1}^p(n) = \sum_{d \mid n, p \nmid d} d^{k-1}$$

Also, $E_k^{(p)}(z)$ is a modular form of weight k and level $\Gamma_0(p)$

Theorem

There exists a power series

$$\mathcal{E}(z) = \sum_{n=0}^{\infty} a_n q^n$$

such that $a_n\in \Lambda(\mathbb{Z}_p^{ imes})$ for all $n\geq 1$, a_0 is a pseudo-measure and for all $k\geq 4$ and even, we have

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \mathcal{E}(z) := \left(\int_{\mathbb{Z}_p^{\times}} x^{k-1} a_n \right) q^n = E_k^{(p)}(z)$$

Continued

Note that

$$E_k^{(p)}(z) := \frac{(1-p^{k-1})\zeta(1-k)}{2} + \sum_{n \ge 1} \sigma_{k-1}^p(n)q^n$$

where

$$\sigma_{k-1}^p(n) = \sum_{d \mid n, p \nmid d} d^{k-1}$$

Also, $E_k^{(p)}(z)$ is a modular form of weight k and level $\Gamma_0(p)$

Theorem

There exists a power series

$$\mathcal{E}(z) = \sum_{n=0}^{\infty} a_n q^n$$

such that $a_n \in \Lambda(\mathbb{Z}_p^{\times})$ for all $n \ge 1$, a_0 is a pseudo-measure and for all $k \ge 4$ and even, we have

$$\int_{\mathbb{Z}_p^{\times}} x^{k-1} \mathcal{E}(z) := \left(\int_{\mathbb{Z}_p^{\times}} x^{k-1} a_n \right) q^n = E_k^{(p)}(z)$$

It's over

Thank you! Always unsure what to write on this slide.