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Introduction

The Riemann-zeta function

ζ(s) =
∞

∑
n=1

1
ns (1)

defined for Re(s) > 1, can be extended meromorphically to other values of s by analytic

continuation and follows the functional equation [Lan94] [Dav80]

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s) (2)

Riemann’s proof crucially depends on the Poisson summation formula

∑
n∈Z

f (at) =
1
|t| ∑

n∈Z

f̂ (a/t) (3)

where f̂ is the Fourier transform on the reals f̂ (ξ) :=
∫

R
exp(−2πiξx) f (x)dx where

exp(x) = 2πix is the standard character from R to S1
. Applying this formula to the

Gaussian function exp(π|x|2) which is its own (additive) Fourier transform, and then

applying Mellin transform (multiplicative Fourier transform), one obtains the func-

tional equation (2). An important thing to notice in the proof is how the additive and

multiplicative Fourier transform combine to give the functional equation.

In his PhD thesis [Cas+76] (independently found by Iwasawa [Iwa]), Tate was able

to extend this idea to the adéle ring of a number field. He was able to develop Poisson

summation formula in this setting 41, apply this formula to the adélic Gauss function

which is its own Fourier transform and then apply adélic Mellin transform to obtain a

functional equation 27 of the type we saw before.

The significance of this thesis lies in the fact that the theory developed in the process

allows one to seamlessly generalise the functional equation to Dedekind zeta functions

and Hecke L-functions, thereby giving us a large class of functions whose analytic con-
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Introduction

tinuation and functional equation is readily available.

Chapter 1 deals with the local theory. We construct additive and multiplicative char-

acters for local fields. We also construct the additive and multiplicative Haar measure

on the local fields. After that we define the local zeta integrals whose analytic continu-

ation and functional equation is the main result of this chapter. In the euler product(
π−s/2Γ

( s
2

))
∏

p
(1 − p−s)−1

Each of the term in the product will arise as the local zeta integral defined in this chapter.

Chapter 2 is concerned with the global theory. We again construct additive and mul-

tiplicative characters. But this time the characters come directly from the local theory.

The measures also come directly from the local theory. The highlight of §2.2 is the Pois-

son summation formula and Riemann-Roch theorem that will come in handy while

proving the analytic continuation and functional equation of the global zeta integral as

will be seen in §2.4. The preliminaries about adele rings and idele groups is explained

in detail in the appendices C.4, C.5, C.6.

In chapter 3, we first give an introduction to classical automorphic forms, then look

at automorphic forms defined on GL(n), and observe how Tate’s thesis fits into the pic-

ture as GL(1) case. In §3.3, we will attach L-functions to automorphic forms and talk

of its analytic continuation and functional equation. The proof follows Tate’s philoso-

phy. We first construct these Whittaker models which is used to conclude the analytic

continuation and functional equation of the local L-functions. We then observe that the

global L-functions occur as product of local L-functions and the analytic continuation

of the local L-functions allows us to analytically continue the global L-function. We also

obtain a functional equation for the global L-function in §§3.3.2.

The necessary results on topological groups, Haar measure, analysis on locally com-

pact abelian groups, Algebraic number theory is provided in the appendices.
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1. Local Theory

Let K be a number field, Kp the completion of K at the prime p. If p is Archimedean,

then Kp is either R or C and if p is non-Archimedean, then Kp is p-adic and contains a

ring of integers Op with a single prime ideal p = ⟨ϖ⟩ with Op/p finite, the cardinality

being Np. Kp is complete and hence a local field.

We choose our valuation on Kp such that

• |α| is the normal absolute value on R if Kp is real.

• |α| is square the real absolute value if Kp is complex.

• |α| = (Np)−v = (O/αO)−1
with v the valuation of α.

Lemma 1. A subset B ⊆ Kp has compact closure if and only if it is bounded in absolute value.

Proof. Note that for Archimedean places, Kp is either R or C, in which case it is just

Heine-Borel’s theorem. So, we assume that Kp is non-Archimedean. For the ‘ ⇒′
direc-

tion, suppose B is compact. Owing to the fact that the absolute value map is a contin-

uous map from Kp to R, the image of B under this map is also a compact set in R and

hence the image is bounded.

For the other direction ‘ ⇐′
, we suppose there is an integer d such that all elements

of B have absolute value less than (Np)d
. This means every element of B is contained

in ϖ−dOp. Since Op is compact and multiplication map is a continuous map, B is con-

tained in a compact set. This in turn implies that B is relatively compact.

1.1. Additive characters and measures

The characters of the group K+
p can be explicitly expressed through the following

1



1. Local Theory

Proposition 2 ([Cas+76] Lemma 2.2.1). Say ξ 7→ χ(ξ) is a non-trivial character of K+
p .

Then, to each η ∈ K+
p we can associate an unitary character χη : ξ 7→ χ(ξη). This correspon-

dence is both a topological and algebraic isomorphism between K+
p and its character group K̂+

p

(character group has compact open topology).

Before we prove the proposition, we will remark a few things and also note certain

results.

Remark 3. Notice that the proposition requires the existence of a non-trivial character. We will
first show that such a non-trivial character exists. Let p be the rational prime lying below p and
R be the completion of Q with respect to p. This leads us to two cases:

1. p is Archimedean, in which case R is the real numbers. Define the map λ : R → R/Z

by x 7→ −x mod 1

2. p is non-Archimedean, then R = Qp. Then, λ : Qp → R/Z is defined as follows: Let
x ∈ Qp, then x = p−v(a0 + a1p + · · · ) for an unique integer v. For k ≥ v, we have

pkx = pk−v(a0 + a1p + a2p2 + · · · )

=

(
a0 + a1p + a2p2 + · · · av−1pv−1

pv

)
pk + pkZp

Choose an integer n such that n ≡ pkx mod pkZp. Then, put λ(x) = n/pk ∈(
∑v−1

i=0 a0pi

pv

)
+ Z. Hence, λ is determined uniquely upto mod 1.

We will show that λ is determined by two properties:

a) λ(x) ∈ Q with only a p-power in denominator.

b) λ(x)− x ∈ Zp.

Indeed, we can use property a to get λ(x) = n/pk. Moreover, using property b we have
n − pkx ∈ pkZp which implies n ≡ pkx mod pkZp. Hence, the properties are enough
to find λ(x) and by construction λ(x) also has the two properties.

Lemma 4 ([Cas+76] Lemma 2.2.2). The function x 7→ λ(x) is a non-trivial, continuous
additive map of R into the group of reals mod 1.

Proof. In the pArchimedean case, this is obvious. So, let us focus on the pnon-Archimedean

case. Note that λ(x) + λ(y) is also a rational number with denominator p-power, so

λ(x)+λ(y) satisfies property a, and λ(x)+λ(y)− (x+ y) = (λ(x)− x)+ (λ(y)− y) ∈

2



1. Local Theory

Zp so λ(x) + λ(y) satisfies property b. Hence, λ is additive. It is non-trivial since

λ(x) = 0 ⇔ x ∈ Zp. To check continuity, it is enough to check at 0 since the map

is additive. Let {xn} be a sequence going to 0 p-adically. Then, there exists N ∈ Z>0

such that vp(xn) ≥ 0 ∀ n ≥ N ⇒ xn ∈ Zp whenever n ≥ N. This implies λ(xn) = 0

for n ≥ N from a previous observation. This completes the proof.

Proof of 2. We have to check a few things:

1. Well-defined: For a fixed η, the map ξ 7→ ηξ is a continuous map and ηξ 7→ χ(ηξ)

is also a continuous map, so the map η 7→ χη is a continuous and |χ(ηξ)| = 1

which means the character χη is unitary. Also, χη(ξ1 + ξ2) = χ(η(ξ1 + ξ2)) =

χ(ηξ1 + ηξ2) = χ(ηξ1)χ(ηξ2) = χη(ξ1)χη(ξ2), so χη is a group homomorphism.

2. The map η 7→ χη is a group homomorphism. Indeed, χη1+η2(ξ) = χ((η1 +

η2)ξ) = χ(η1ξ + η2ξ) = χ(η1ξ)χ(η2ξ) = χη1(ξ)χη2(ξ).

3. The map η 7→ χη is injective. If η is in the kernel of the map, then χη(ξ) = 1 ∀ ξ ∈
K+
p ⇔ χ(ηξ) = 1 ∀ ξ ∈ K+

p ⇒ ηK+
p ̸= K+

p unless η = 0.

4. The map η 7→ χη is bicontinuous. Since both the groups are topological groups, it

is enough to check continuity at 0 and the trivial character respectively. Suppose

{ηn} is a sequence in K+
p going to 0. Let W(C, U) with C compact and U open in

S1
. Since χ is continuous, χ−1(U) is open and hence there exists δ > 0 such that

B(0; δ) ⊆ χ−1(U). Since C is compact, therefore it is bounded in absolute value

1 by some integer M, i.e., |x| < M. Choose N such that |ηn| < δ/M for n ≥ N.

For n ≥ N, we have |ηnC| < δ ⇒ ηnC ⊆ B(0; δ) ⊆ χ−1(U) ⇒ χ(ηnC) ⊆ U for all

n ≥ N as required.

Conversely, let {χηn} be a sequence of characters tending to χtriv. If W(C, U) is a

neighbourhood of χtriv, then there exists N such that χ(ηnC) ⊆ U for all n ≥ N.

The above observation is independent of the choice of the compact set C and open

set U. We will concern ourselves with CM = {x ∈ K+
p : |x| ≤ M}. Next, we

choose U conveniently by first choosing ξ ∈ K+
p , then choosing U ∋ 1 such that

χ(ξ) ̸∈ U. Then, from the observation made earlier in this paragraph, there exists

N such that χ(ηnCM) ⊆ U for all n ≥ N. But χ(ξ) ̸∈ U, which means ξ ̸∈ ηnCM.

Therefore, |ξ| ≥ |ηn|M ⇒ |ηn| ≤ |η|/M. But M was chosen arbitrarily, therefore

ηn tends to 0 in K+
p .

3



1. Local Theory

5. The map η 7→ χη is surjective. Let H be the image of K+
p under the map. It is a

locally compact subgroup of the Hausdorff space K̂+
p ⇒ H is a closed subgroup

of K̂+
p . We want to show K̂+

p = H which is equivalent to showing that every

character on K̂+
p /H is the trivial character. Let ψ be such a character, then we

can get a character of K̂+
p by the composition K̂+

p → K̂+
p /H → S1

. By Pontryagin

duality (G ≃ ̂̂G via a 7→ δa : χ 7→ χ(a)) our character is also of this type. Moreover,

our character vanishes on H which is equivalent to saying that it is trivial on all

of the image of η 7→ χη OR

∃ξ ∈ K+
p such that χη(ξ) = χ(ηξ) = 1 ∀ η ∈ K+

p

But multiplication is an automorphism of K+
p , therefore K+

p ξ ̸= K+
p unless ξ = 0.

Hence, ψ itself is trivial. Therefore, H is dense in K+
p and is closed as well. So, we

conclude that H = K̂+
p .

This completes the proof.

Now, define for ξ ∈ K+
p , Λ(ξ) = λ(TrKp/R(ξ)). We see that ξ 7→ exp(2πiΛ(ξ)) is a

non-trivial character of K+
p . Thus, we have proved

Theorem 5 ([Cas+76] Theorem 2.2.1). K+
p is naturally its own character group K̂+

p under
the identification η 7→ (ξ 7→ exp(2πiΛ(ηξ)))

Lemma 6 ([Cas+76] Lemma 2.2.3). If p is non-Archimedean, the character exp(2πiΛ(ηξ))

associated to η is trivial on Op if and only if η ∈ d−1.

Proof. The character exp(2πiΛ(ηξ)) associated to η is trivial on Op is equivalent to say-

ing Λ(ηOp) = 0 ⇔ λ(TrKp/R(ηOp)) ⇔ TrKp/R(ηOp) ⊆ Zp ⇔ η ∈ d−1
.

Since K+
p is a locally compact group, we have a Haar measure µ on it.

Lemma 7 ([Cas+76] Lemma 2.2.4). If we define µ1(M) = µ(αM) for 0 ̸= α ∈ Kp, and M a
measurable set in Kp, then µ1 is also a Haar measure, and consequently there exists a number
mod α > 0 such that µ1 = (mod α)µ.

Proof. The multiplication map ξ 7→ ηξ is an automorphism of K+
p with ξ 7→ α−1ξ as

the inverse. Since K+
p is a topological group, the multiplication map is bicontinuous as

well. Therefore, it is both a topological and algebraic automorphism of K+
p . If M is a

measurable set and compact, then αM is compact as well and therefore µ(αM) = µ1(M)

4



1. Local Theory

is finite. If M is an open, measurable set, then αM is also open and measurable. By

inner-regularity of µ on open sets, we have

µ(αM) = sup{µ(K′) : K′ ⊆ αM, K′
compact}

Compact sets contained in αM are α-translates of the compact sets contained in M. This

proves inner regularity of µ1. Outer regularity also follows in a similar way. To see left

invariance, observe that µ1(M + β) = µ(αM + αβ) = µ(αM) = µ1(M). This completes

the proof.

Lemma 8 ([Cas+76] Lemma 2.2.5). The constant mod α in the previous lemma is the ab-
solute value |α| as defined in the beginning, i.e., µ(αM) = |α|µ(M)

Proof. It is clear that the definition of mod α does not depend on the choice of the

measurable set M. So, we can choose our set so as to ease calculations.

1. Kp = R. Let M = [0, 1]. Then, αM = [0, α] for any α ∈ R. Here, the Haar measure

is upto a scalar a Lebesgue measure, and the Lebesgue measure of [0, α] is |α|. So,

µ(αM) = |α|µ(M)

2. Kp = C. Let M = [0, 1]× [0, 1]. Then, αM is a square of area |α|2 and so µ(αM) =

|α|µ(M)

3. Kpr is non-Archimedean. Let M = Op. Since M is open and compact, therefore

µ(M) < ∞. For αOp, the number of cosets of αOp in Op is given by N(αOp).

Hence, µ(αOp)[Op : αOp] = µ(Op).

This completes the proof.

For the integral, we can interpret the previous lemma as follows:

dµ(αM) = |α|dµ(M)

Or, ∫
K+
p

f (ξ)dµ(ξ) = |α|
∫

K+
p

f (αξ)dµ(ξ)

This was for a general Haar measure. Now, we will try to choose our measure so that

certain "nice" things happen. Let us see what we mean by "nice".

5



1. Local Theory

Let dµ be a Haar measure on K+
p . Then, dual to this there is a measure dχ on K̂+

p .

Under the isomorphism K̂+
p ≃ K+

p , suppose dµ′
is the measure corresponding to dχ.

We want to see how are dµ and dµ′
related. Since dµ′

is also a Haar measure, therefore

there is a constant c > 0 such that dµ′ = cµ. So, under the transition

K+
p K̂+

p K+
p

dµ dχ dµ′ = cdµ

√
cdµ 1√

c dχ c√
c dµ

we want to choose our measure dµ such that under the transition dµ 7→ dχ 7→ dµ′

the measure remains unchanged. We choose the following measures so that the above

happens:

1. dξ = ordinary Lebesgue measure on the real line R if Kp is real.

2. dξ = twice the ordinary Lebesgue measure if Kp is complex.

3. dξ = the measure that gives Op the value (Nd)−1
if Kp is non-Archimedean.

All this discussion allows us to prove the following:

Theorem 9 ([Cas+76] Theorem 2.2.2). If we define the Fourier transform f̂ of a function
f ∈ L1(K+

p ) by :
f̂ (η) :=

∫
K+
p

f (ξ) exp(−2πiΛ(ηξ))dξ

then with our choice of measure, we get the inversion formula

f (ξ) =
∫

K+
p

f̂ (η) exp(2πiΛ(ηξ))dη = ̂̂f (−ξ)

Proof. We just need to check the formula for one non-trivial function, since any other

function’s transform will vary only upto a constant factor. The calculations can be seen

in [Cas+76] §2.5.

6



1. Local Theory

1.2. Multiplicative characters and measures

Now, let us investigate the characters on K×
p . Consider the continuous homomorphism

α 7→ |α| from K×
p to the group of positive real numbers. The kernel of this homomor-

phism is the set of all α such that |α| = 1. We call the set U. It will play an important

role in our analysis. U is compact and when p is non-Archimedean, U is also open.

Definition 10. We say a character χ of K×
p is unramified if it is trivial on U. We will first

find the unramified quasi-characters and use it to completely characterise the quasi-characters
on K×

p .

Lemma 11 ([Cas+76] Lemma 2.3.1). The unramified quasi-characters are the maps of the form
χ(α) = |α|s ≡ es log α where s is any complex number, s is determined by χ if p is Archimedean
and for p non-Archimedean, s is defined upto mod 2πi/ log Np.

Proof. Notice that for α ∈ U, we have |α|s = 1, and |αβ|s = |α|s|β|s. The fact that |α|s is a

continuous map follows from absolute value map being a continuous homomorphism.

Hence, |α|s is indeed an unramified quasi-character. Let ψ be an unramified quasi-

character, then such a quasi-character factors through a character ψ′
of |K×

p | (|α| 7→
ψ(α)) as in the diagram below:

K×
p C×

|K×
p |

|·|

ψ

ψ′

Clearly,

1. ψ′
is a homomorphism. Indeed, ψ′(|α||β|) = ψ′(|αβ|) = ψ(αβ) = ψ(α)ψ(β) =

ψ′(|α|)ψ′(|β|)

2. ψ′
is a character of the value group |K×

p |. Depending on whether p is Archimedean

or non-Archimedean, the value group |K×
p | is R>0 or (Np)Z

.

Since the characters of R>0 is just raising to power s, we have ψ(α) = ψ′(|α|) = |α|s; s ∈
C. If s1 ̸= s2 ∈ C, then raising to s1 will give a different character than raising to s2. So,

every s ∈ C gives rise to a different character.

Now, to find the characters of (Np)Z
, we only need to find character of Z as (Np)Z ≃ Z

(the map being (Np)m 7→ m). A character of Z is m 7→ zm
with z ∈ C. Write z = reiθ

in

7



1. Local Theory

the polar form with r > 0 and 0 ≤ θ < 2π, put x, y ∈ R such that Npx = r, Npy = eθ
.

So, a character of (Np)Z
is Npm 7→ m 7→ zm = NpxNpiy = Npx+iy = Nps

with

s = x + iy ∈ C. For s1 ̸= s2 ∈ C that give rise to the same character, we have Nps1 =

Nps2 ⇒ Nps1−s2 = 1 ⇒ exp((s1 − s2) log Np) = 1 ⇒ (s1 − s2) log Np = 2πin; n ∈
Z ⇒ s1 − s2 = (2πi/ log Np)n; n ∈ Z. This completes the proof.

If p is Archimedean, we can write a general element α ∈ K×
p uniquely in the form

α = α̃ρ, α̃ ∈ U, ρ > 0. Indeed let ρ = |α|, α̃ = α/|α|. If p is non-Archimedean, then α =

α̃ρ with α̃ ∈ U, ρ a power of ϖ. Hence, the map α 7→ α̃ is a continuous homomorphism

from K×
p to U.

Theorem 12 ([Cas+76] Theorem 2.3.1). The quasi-characters of K×
p are the maps of the form

α 7→ χ(α) = χ̃(α̃)|α|s, where χ̃ is a character of U. χ̃ is uniquely determined by χ and s is
determined as in previous lemma.

Proof. A map of the given type is definitely a quasi-character. Conversely, if χ is a quasi-

character, then we define χ̃ to be the restriction of χ to U and is therefore a character

of U since U is compact. The map α 7→ χ(α)/χ̃(α̃) is an unramified quasi-character,

therefore it is of the form |α|s with s as determined in previous lemma.

Remark 13. Two quasi-characters are said to be equivalent if their quotient is an unramified
quasi-character.

So, the search for quasi-characters of K×
p can be completed if we figure out the char-

acters of U.

1. For p Archimedean and real, we have U = {±1} and the character is χ̃ such that

χ̃(−1)2 = 1̃ = 1 ⇒ χ̃(−1) is a square root of unity. Hence, χ̃(α̃) = α̃n; n = 0, 1.

2. If p is Archimedean and complex, then U = {z ∈ C : |z| = 1}. And, the characters

of this group are χ̃(α̃) = α̃n; n ∈ Z.

3. When p is non-Archimedean, we know that 1 + pn; n > 0 forms a fundamental

system of neighbourhoods of 1. Now, take a neighbourhood V of 1 ∈ C×
such that

it only contains the trivial subgroup (no small subgroups theorem), then χ̃−1(V)

is an open neighbourhood of 1 ∈ K×
p and so there exists v > 0 such that 1 + pv ⊆

χ̃−1(V) ⇒ χ(1 + pv) ⊆ U is a subgroup but by choice there is only the trivial

subgroup, so χ̃(1 + pv) = 1 for sufficiently large v. The minimal such v allows us

to define the conductor f = pv
of χ̃. Then, χ̃ may be described as a character of

the finite factor group U/1 + f.

8



1. Local Theory

Now, let us move on to the measure on K×
p . We will use the measure dξ on K+

p to

construct a measure dα on K×
p . If f (α) ∈ L(K×

p ), then f (ξ)|ξ|−1 ∈ L(K+
p − {0}). So, we

may defined a functional

Φ( f ) :=
∫

K+
p −{0}

f (ξ)|ξ|−1dξ

If g(α) = f (βα) for some fixed β ∈ K×
p , then

Φ(g) =
∫

K+
p −{0}

f (βξ)|ξ|−1dξ = Φ( f )

after appropriate substitutions. Therefore, our functional is invariant under multiplica-

tive transform and hence must come from a Haar measure on K×
p . Denote this measure

by d×α. We obtain ∫
K×
p

f (α)d×α =
∫

K+
p −{0}

f (ξ)|ξ|−1dξ

The 1 − 1 correspondence between L(K+
p − {0}) and L(K×

p ), and viewing the func-

tions of L1(K+
p − {0}) and L1(K×

p ) as limits of the functions in the previous spaces (re-

spectively), we have

Lemma 14 ([Cas+76] Lemma 2.3.2). f (α) ∈ L1(K×
p ) ⇔ f (ξ)|ξ|−1 ∈ L1(K+

p − {0}), and
for these functions, we have∫

K×
p

f (α)d×α =
∫

K+
p −{0}

f (ξ)|ξ|−1dξ

We normalise the measure d×α such that it gives measure 1 on U. This is done by the

following choice:

1. If p is Archimedean, then d×α = |α|−1dα

2. If p is non-Archimedean, then d×α =
Np

Np− 1
dα

|α|

1.3. The local ζ function and functional equation

Let us define an important class of functions. By Z, we denote the class of functions

satisfying the following properties

1. f (ξ) and f̂ (ξ) are continuous, and belong to L1(K+
p )

9



1. Local Theory

2. f (α)|α|σ and f̂ (α)|α|σ belong to L1(K+
p ) for σ = Re(s) > 0

Definition 15. For f ∈ Z and quasicharacters χ with exponent > 0, we introduce a function
ζ( f , χ) as

ζ( f , χ) =
∫

K×
p

f (α)χ(α)d×α

and call such a function a ζ-function of Kp.

Lemma 16 ([Cas+76] Lemma 2.4.1). A ζ-function is regular for all quasi-characters with of
exponent greater than 0.

Proof. First consider the case when F is Archimedean. In this case we note that∫
K×
p

| f (α)χ(α)|d×α =
∫

K×
p

| f (α)||α|σd×α

But this integral is finite by the assumption that f ∈ Z.

For the non-Archimedean case, observe that f is locally constant with compact support

and thus factors through a finite quotient group of the form ϖmOp/ϖnOp for some

integers m, n. By the linearity and translational invariance of Haar measure, it suffices

to check only for functions f that are characteristic functions of ϖkOp. Note that

ϖk \ {0} =
⊔
j≥k

ϖ jO×
p

and therefore

I =
∫

K×
p

| f (α)||α|σd×α

= Measd×α(O×
p ) ∑

j≥k
q−jσ

= Measd×α(O×
p )

q−kσ

1 − q−σ
< ∞

This completes the proof.

Lemma 17 ([Cas+76] Lemma 2.4.2). For χ in the domain 0 < σ < 1 and χ∨ = |α|χ−1(α),
we have

ζ( f , χ)ζ(ĝ, χ∨) = ζ( f̂ , χ∨)ζ(g, χ)

for all f , g ∈ Z

10



1. Local Theory

Proof.

ζ( f , χ)ζ(ĝ, χ∨) =
∫

K×
p

f (α)χ(α)d×α
∫

K×
p

ĝ(β)χ−1(β)|β|d×β

If the exponent of χ is σ, then the exponent of χ∨(α) is 1 − σ. Hence, both σ and 1 − σ

are both in the region of definition as in the hypothesis. Moreover, due to absolute

convergence we can club the integrals to get

=
∫

K×
p

∫
K×
p

f (α)χ(α)ĝ(β)χ−1(β)|β|d×αd×β

Since d×αd×β is invariant under multiplicative translation, therefore the map (α, β) 7→
(α, αβ) is an automorphism. We get

=
∫

K×
p

∫
K×
p

f (α)χ(α)ĝ(αβ)χ−1(αβ)|αβ|d×αd×β

=
∫

K×
p

(∫
K×
p

f (α)ĝ(αβ)|α|d×α

)
χ−1(β)|β|d×β

Now, the term outside the inner integral is independent of f , g. So, it is enough to show

that the inner integral is symmetric in f , g.∫
K×
p

f (α)ĝ(αβ)|α|d×α =
∫

K+
p

f (ξ)ĝ(ξβ)dξ

=
∫

K+
p

f (ξ)
∫

K+
p

g(η) exp(−2πiΛ(ηξβ))dξdη

=
∫

K+
p

∫
K+
p

f (ξ)g(η) exp(−2πiΛ(ηξβ))dξdη

And the above is symmetric in f , g.

Theorem 18 (Main theorem of local theory). [[Cas+76] Theorem 2.4.1] A ζ-function has an
analytic continuation to the domain of all quasi-characters given by the functional equation of
the type

ζ( f , χ) = ρ(χ)ζ( f̂ , χ∨)

The factor ρ(χ) is independent of the choice of f , is a meromorphic function of quasi-characters
defined for 0 < σ < 1 by the functional equation itself and for all quasi-characters by analytic
continuation.

Proof. Fix an equivalence class of characters C, and choose a function fC. Then, for any

11



1. Local Theory

f ∈ Z we have

ζ( f , χ)ζ( f̂C, χ∨) = ζ( f̂ , χ∨)ζ( fC, χ)

ζ( f , χ)

f̂ , χ∨
=

ζ( f̂C, χ∨)

ζ( fC, χ)

Defining ρ(χ) :=
ζ( f̂C, χ∨)

ζ( fC, χ)
, we note that this ρ(χ) is defined on 0 < σ < 1 by previous

lemma. An explicit computation of ρ(χ) (in next section) will tell us that it is actually

a meromorphic function in the parameter s defined over the class C and hence we will

have an analytic continuation to all of C. The theorem then follows from this.

1.4. Computation of ρ(χ) for special functions

Before computing the value of ρ(χ) for special functions. Let us note a few things (corol-

laries to the main theorem 18) about it.

1. ρ(χ∨) = χ(−1)/ρ(χ). Indeed, ζ( f , χ) = ρ(χ)ζ( f̂ , χ∨) = ρ(χ)ρ(χ∨)ζ(̂̂f , χ∨∨) =

ρ(χ)ρ(χ∨)χ(−1)ζ( f , χ) since
̂̂f (α) = f (−α) and χ∨∨(α) = c(α). This implies

ρ(χ)ρ(χ∨) = χ(−1).

2. χ(χ) = χ(−1)ρ(χ). Indeed, note that f̂ (α) = f̂ (α) and χ̂∨(α) = χ∨(α). Therefore,

ζ( f , c) = ζ( f , χ) = ρ(χ)ζ( f̂ , χ∨) = ρ(χ)χ(−1)ζ( f̂ , χ∨) = ρ(χ)ρ(−1)ζ( f̂ , χ∨).

But, ζ( f , χ) = ρ(χ)ζ( f̂ , χ∨). This allows us to conclude that ρ(χ) = χ(−1)ρ(χ).

3. |ρ(χ)| = 1 for χ of exponent 1/2. To see this, note that exponent of χ = 1/2

implies χ(α)χ(α) = |χ(α)|2 = |α| = χ(α)χ∨(α) ⇒ χ(α) = χ∨(α). After this, use

the last two results.

All the calculations are done in Tate’s original thesis [Cas+76] §2.5, so I will not repeat

the arguments. I will just tabulate the data. I will do that in a case by case manner, first

Kp real, then complex and then p-adic.

Kp is real

The equivalence classes of quasi-characters are |α|s and ±|α|s. The two classes will

be represented by ||s and ±||s respectively. Note that ρ(χ) as in the main theorem, does

not depend on the choice of fC so we choose our fC conveniently. The corresponding

functions are

12



1. Local Theory

• f||s(ξ) = exp(−πξ2)

• f±||s(ξ) = ξ exp(−πξ2)

Their Fourier transforms are

• f̂||s(ξ) = f (ξ)

• f̂±||s(ξ) = i f±||s(ξ)

The corresponding ζ-functions are:

• ζ( f||s , ||s) = π−s/2Γ(s/2)

• ζ( f±||s ,±||s) = π− s+1
2 Γ((s + 1)/2)

• ζ( f̂||s , (||s)∨) = π− 1−s
2 Γ((1 − s)/2)

• ζ( f̂±||s , (±||s)∨) = iπ− (1−s)+1
2 Γ(((1 − s) + 1)/2)

This gives the explicit expression for ρ(χ):

• ρ(||s) = 21−sπ−s cos
(πs

2

)
Γ(s)

• ρ(±||s) = −i21−sπ−s sin
(πs

2

)
Γ(s)

Kp is complex

The equivalence classes of quasi-characters are χn||s where χn(α) = χn(reiθ) = einθ
.

The corresponding functions are

• fn(ξ = x + iy) = (x − iy)|n|e−2π(x2+y2)
if n ≥ 0

• fn(ξ = x + iy) = (x + iy)|n|e−2π(x2+y2)
if n ≤ 0

Their Fourier transform is

f̂n(ξ) = i|n| f−n(ξ) for all n

The ζ-functions are: For α = reiθ

• ζ( fn, χn||s) = (2π)1−s+ |n|
2 Γ
(

s +
|n|
2

)

• ζ( f̂n, (χn||s)∨) = i|n|(2π)s+ |n|
2 Γ
(

1 − s
|n|
2

)

13



1. Local Theory

Therefore, the explicit expression for ρ(χ) is

ρ(χ) = (−i)|n|
(2π)1−sΓ

(
s + |n|

2

)
(2π)sΓ

(
1 − s + |n|

2

)
Kp is p-adic

The equivalence classes are represented by χn for n ≥ 0. It denotes a character of K×
p

with conductor exactly pn
such that χn(ϖ) = 1. The corresponding functions are

• fn(ξ) = exp(2πiΛ(ξ)) for ξ ∈ d−1p−n

• fn(ξ) = 0 otherwise

Their Fourier transforms are

• f̂n(ξ) = (Nd)1/2(Np)n
for ξ ≡ 1 (mod p)n

• f̂n(ξ) = 0 otherwise

The ζ-functions are

• For n = 0, we have ζ( f0, ||s) = Nds−1/2

1 − Np−s and ζ( f̂0, (||s)∨) = 1
1 − Nps−1

• For n > 0, if {ϵ} are representatives of the factor group U/1 + pn
. Then, we have

ζ( fn) = Np(d+n)s

(
∑
ϵ

χn(ϵ) exp(2πiΛ(ϵ/πd+n))

) ∫
1+pn

d×α

and

ζ( f̂n, (χn||s)∨) = Nd1/2Npn
∫

1+pn
d×α

This allows us to get an explicit form of ρ(χ) which is

ρ(||s) = Nds−1/2 1 − Nps−1

1 − Np−s

and

ρ(χn||s) = N(df)s−1/2ρ0(χ)

if χ is a ramified character of conductor f such that χ(ϖ) = 1, and ρ0(χ) = Nf−1/2 ∑ϵ c(ϵ) exp(2πiΛ(ϵ/πord(df)))

Remark 19. The ρ0(χ) above is the so-called root number and has absolute value 1.
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2. Global Theory

2.1. Characters and measures

2.1.1. Characters

We wish to view every quasi-character c of AK in terms of quasi-characters of the local

fields Kν. If χ(a) is a quasi-character of G, i.e. a continuous multiplicative map from G

to C×
, we denote by χp the restriction of χ to Gp: Gp ∋ ap 7→ χ(ap) = χ(· · · 1, ap, 1, · · · ).

Clearly, χp is a quasi-character of Gp. In fact,

Lemma 20 ([Cas+76] Lemma 3.2.1). χp is trivial on Hp for all but finitely many p, and we
have for any a ∈ G

χ(a) = ∏
p

χp(ap)

with all but finitely many factors in the product being 1

Proof. Let V be a neighbourhood of 1 in C×
containing no multiplicative subgroup other

than the trivial one. Then, U = ∏ Up is a neighbourhood of 1 ∈ G such that χ(U) ⊆ V.

Let S be the finite set of p for which Up ̸= Hp, then GS ⊆ N ⇒ χ(GS) ⊆ χ(N) ⊆ V ⇒
χ(GS) = 1 ⇒ χ(Hp) = 1 for all p ̸∈ S. If a is a fixed element of G, then we can write

a = ∏p∈S ap × aS
such that aS ∈ GS

. Then,

χ(a) = ∏
p∈S

χ(ap)× χ(aS) = ∏
p∈S

χp(ap) = ∏
p

χp(ap)

as for p ̸∈ S we have χp(ap) = 1.

Moreover, the converse is also true.

Lemma 21 ([Cas+76] Lemma 3.2.2). Let χp be a quasi-character of Gp for all p with χp trivial
on Hp for all but finitely many p. Then, if we define χ(a) = ∏p χp(ap) we obtain a quasi-
character of G.
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2. Global Theory

Proof. Let S be the finite set of places such that χp is trivial on Hp. If s is the cardinality

of S, then for a neighbourhood U of 1 in C×
there exists neighbourhood V such that

Vs ⊆ U. Let Np be the neighbourhood of 1 in Gp such that χp(Np) ⊆ V for p ∈ S and

let Np = Hp for p ̸∈ S. Then,

χ

(
∏
p

Np

)
⊆ Vs ⊆ U

Hence, χ is continuous. This completes the proof.

Notice that χ(a) = ∏p χp(ap) is a character if and only if χp is a character. Let Ĝp

be the set of characters of Gp for all p, and let H∗
p be the subgroup of Ĝp consisting

of elements χp which are trivial on Hp. Then, Hp is compact and implies that Ĥp ≃
Ĝp/H∗

p is discrete ⇒ H∗
p is open, and Hp open implies Gp/Hp is discrete and this means

Ĝp/Hp ≃ H∗
p is compact.

Theorem 22 ([Cas+76] Theorem 3.2.1). The restricted product topology of Ĝp with respect to
the subgroups H∗

p is naturally isomorphic to the character group Ĝ of G, and this isomorphism
is both algebraic and topological.

Proof. The above two lemmas show that the isomorphism is algebraic. Now, we want

to show topological isomorphism. For this, note that χ = (· · · , χp, · · · ) is close to the

identity character ⇔ χ(F) is close to 1 for a large enough compact set F ⇔ χ(∏p Fp)

is close to 1 for Fp ⊆ Gp compact, and Fp = Hp for all but finitely many p ⇔ χp(Fp) is

close to 1 whenever Fp ̸= Hp and χp(Fp) = χp(Hp) = 1 for the remaining p ⇔ χp is

close to 1 in Ĝp for a finite number of p and χp ∈ H∗
p at other p ⇔ χ is close to 1 in the

restricted direct product topology of Ĝp.

2.1.2. Measures

For each Gp, choose a measure dap such that

∫
Hp

dap = 1 for all but finitely many p.

We want to define measure da on G for we can have da = ∏p dap. First, choose a finite

set S, then GS =
(
∏p∈S Gp

)
× GS

. Let daS
be the measure on GS

such that

∫
GS daS =

∏p ̸∈S
∫

Hp
dap. This allows us to define a measure daS as ∏p dapdaS

. Since, GS is an open

subset of G, the measure on G is determined by its value on GS. The measure da on G

is therefore defined such that da = daS. A priori it looks like our measure da depends

on the choice of S. We will show that this is not true. Let T be another set containing

16



2. Global Theory

S, then GS ⊆ GT and we only need to check that daT coincides with daS. This can be

verified easily as

daS = ∏
p∈S

dapdaS = ∏
p∈S

dap ∏
p∈T\S

dapdaT = daT

We have therefore constructed a measure da on G which is going to be denoted by da.

Lemma 23 ([Cas+76] Lemma 3.3.2). Suppose for each p, we have a continuous function fp ∈
L1(Gp) such that fp(ap) = 1 on Hp for all but finitely many p. Then the function f (a) =

∏p fp(ap) is:

1. f (α) is continuous on G

2. For any set S containing p such that fp(Hp) ̸= 1 or
∫

Hp
dap ̸= 1, we have

∫
GS

f (a)da = ∏
p∈S

(∫
Gp

fp(ap)dap

)

Proof. 1. f (a) is continuous on GS and therefore it is continuous on G as well.

2. For a ∈ GS, we have f (a) = ∏p fp(ap). Therefore,

∫
GS

f (a)da =
∫

GS

f (a)daS =
∫

GS
∏
p

fp(ap) ∏
p∈S

daS

= ∏
p∈S

∫
Gp

f (ap)dap
∫

GS
daS

= ∏
p∈S

∫
Gp

f (ap)dap

Theorem 24 ([Cas+76] Theorem 3.3.1). If f (a) and fp(ap) is as in the previous lemma, and
if further

∏
p

∫
Gp

| fp(ap)|dap < ∞

then f (a) ∈ L1(G) and ∫
G

f (a)da = ∏
p

∫
Gp

fp(ap)dap
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Lemma 25 ([Cas+76] Lemma 3.3.3). If fp(ap) are measurable functions in Gp for all p and
fap is the characteristic function of Hp for all but finitely many p, then the function ∏p fp(ap)

has the Fourier transform f̂ (χ) = ∏p f̂p(χp) and f (a) is also measurable.

This lemma requires us to talk of the dual measure on the character group. So, let us

move ahead with that. Denote by χ = (· · · , χp, · · · ) an element of Ĝ (these are charac-

ters not quasi-characters). Let dχp be the measure in Ĝp dual to dap in Gp. Since fp(ap)

is the characteristic function on Hp for all but finitely many p, therefore the Fourier

transform of such a fp is f̂p(χp) =
∫

Gp
fp(ap)χp(ap)dap =

∫
Hp

χp(ap)dap. This integral

amounts to 0 if χp is non-trivial (by orthogonality properties) and it is equal to

∫
Hp

dap
if χp is trivial on Hp. Applying Fourier transform gives us

fp(ap) =
∫

Ĝp

f̂p(χp)χp(ap)dχp

=
∫

Ĝp

1H∗
p

∫
Hp

dapχp(ap)dχp

=
∫

Hp

dap
∫

H∗
p

dχp

This is true for all ap ∈ Gp and hence for all ap ∈ Hp, we have∫
Hp

dap
∫

H∗
p

dχp = 1

Hence, we can conclude that

∫
H∗
p

dχp = 1 for all but finitely many p. This allows us to

define the measure dχ = ∏p dχp.

Proof. We apply theorem 24 to f (a)χ(a) = ∏p fp(ap)χ(ap) to see that the Fourier trans-

form of f is the product of Fourier transforms. Since fp(ap) is measurable function in

Gp, therefore f̂p(χp) ∈ L1(Ĝp) for all p. By the observation just made above, we see

that f̂p(χp) is the characteristic function of H∗
p . Hence, f̂ (χ) is also in L1(Ĝ) and conse-

quently f is measurable function of G.

Corollary 26 ([Cas+76] Corollary 3.3.1). The measure dχ = ∏p dχp is dual to d = ∏p dap

2.2. Global Additive Theory

The analogue to K+
p in local theory will be the adeles. We have a lot of similar results

as will be seen in this section.
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Theorem 27 ([Cas+76] Theorem 4.1.1). AK is naturally isomorphic to its character group
ÂK if we identify an element X = (· · · ,Xp, · · · ) with the character n 7→ exp(2πiΛ(nX))

where Λ(X) = ∑p Λp(Xp)

Proof. The character group of AK is the restricted direct product of K+
p with respect to

O∗
p . And, any character of AK is a tuple of local characters. The local characters that

are trivial on Op are precisely those for which Λp(ξη) = 0 ∀ξ ∈ Op ⇔ λ(Tr(ξη)) =

0 ∀ξ ∈ Op ⇔ Tr(ξη) ∈ Zp ∀ξ ∈ Op ⇔ η ∈ d−1
p . Therefore, the character group of AK

is isomorphic to the restricted direct product of K̂p with respect to dp−1
with a typical

element n = (· · · , np, · · · ). But for all but finitely many p, we have Op = dp (since

only finitely many primes are ramified). This is equivalent to saying that np is trivial

for almost all p. This completes the proof.

Theorem 28 ([Cas+76] Theorem 4.1.2). If f (X) ∈ L1(AK), we define the Fourier transform

f̂ (y) =
∫

AK

f (X) exp(−2πiΛ(yX))

then for f (X) measurable, the inversion formula is

f (X) =
∫

ÂK

f̂ (y) exp(2πiΛ(Xy))

Lemma 29 ([Cas+76] Lemma 4.1.1). The map X 7→ bX is an automorphism of AK if and
only if b is an idele.

Remark 30. This can be seen as an analogue of 7 8

Proof. For the map to be an automorphism, we need the existence of a a′ ∈ AK such

that aa′ = (· · · , 1, · · · ). This is both a necessary and sufficient condition. The condition

is equivalent to saying that each ap ̸= 0 and a′p = a−1
p . Moreover, since a′ ∈ AK we

have a′p ∈ Op for all but finitely many p. This means |ap|p = 1 for all but finitely many

p. This completes the proof.

Lemma 31 ([Cas+76] Lemma 4.1.2). For an idele b, d(bX) = |b|dX with |b| = ∏p |bp|p

Proof. Let µ(X) = d(bX). Then, multiplication by an idele being an automorphism

implies that µ is a Haar measure. Hence, there is a positive constant c such that µ(X) =

cdX. Now, to find c we can take a convenient measurable set and compute accordingly.
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Let M be a compact neighbourhood of 0 in AK. Then,∫
M

dX = ∏
p

∫
Mp

dXp∫
bM

dX = ∏
p

∫
bpMp

dXp

= ∏
p

∫
Mp

|bp|pdXp

= |b|
∫

M
dX

Let A∞
K be the infinite part of AK, ∏p∈S∞ Kp. For any X ∈ AK, let X∞ = (Xp)p∈S∞

denote the projection of X in A∞
K .

Lemma 32 ([Cas+76] Lemma 4.1.4). If {ω1, · · · , ωn} be the integral basis for the ring of
integers O over Z. Then, {ω∞

1 , · · · , ω∞
n } is a basis for the vector space A∞

K over the real
numbers. The parallelotope

D∞ := {
n

∑
v=1

xvω∞
v : 0 ≤ xv < 1}

has volume
√

d if measured against dX∞ where d = det(ω(i)
i )2 is the absolute discriminant of

the number field

Definition 33. The additive fundamental domain D ⊆ AK is the set of all X ∈ AK such that
X ∈ AK,S∞ and X∞ ∈ D∞.

Theorem 34 ([Cas+76] Theorem 4.1.3). 1. AK =
⊔

ξ∈K

ξ + D

2. D has measure 1.

Proof. 1. This is a consequence of approximation theorem.
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2. To compute the measure of D, note that D ⊆ AK,S∞ and D = D∞A
S∞
K . Hence,

∫
D

dX =
∫

D
dXS∞

=
∫

D∞×A
S∞
K

dX∞dXS∞

=
∫

D∞
dX∞

∫
A

S∞
K

dXS∞

=
√
|d| ∏

p ̸∈S∞

Npd
−1/2
p

Since discriminant is the norm of the different ideal, and the global different is prod-

uct of local differents, the value of the integral is 1. This completes the proof.

Corollary 35 ([Cas+76] Corollary 4.1.1). K is a discrete subgroup of AK. The factor group
AK/K is compact.

Proof. I will prove the theorem for K = Q first. The case of function field follows from

similar arguments. To show the first claim, it suffices to show that the neighbourhood

of 0 is isolated, since we can translate to any other point homeomorphically. Consider

the open set

U = {a ∈ AK : |a|∞ < 1, |a|v ≤ 1 for v < ∞}

Now, for any a ∈ K× ⊆ AK we have ||a|| = 1 due to the product formula. Therefore,

U ∩ K = {0}. This completes the proof.

To show that AK/K is compact, this is the strategy. Consider the set

U = [0, 1]× ∏
p<∞

Zp

is a compact set. If I can show that this product contains the coset representatives of

AK/K, then AK/K is the image of a compact set under a continuous map and hence

compact.

Take (av) ∈ AK. If v is ∞ then we can find the largest integer N such that 0 ≤ |a∞ − N| <
1 (just think of greatest integer function). And then we can choose any element c∞ in

the interval (a∞ − N − 1, a∞ − N + 1).

Since (av) ∈ AK, there is a finite set S such that for p ̸∈ S we have ap ∈ Zp. For p ∈ S

and p ̸= ∞ we see that

ap =
∞

∑
j=−N

bj pj
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2. Global Theory

Then,

cp = ap −
−1

∑
j=−N

bj pj ∈ Zp

and we can now look at the set S \ {p} and continue the process to get cp for p ∈ S.

Next, consider the element (xv) such that xv = ap if v ̸∈ S, xv = cp if v ∈ S and x∞ = c∞.

It is clear that (xv) ∈ U. This completes the proof.

Lemma 36 ([Cas+76] Lemma 4.1.5). Λ(ξ) = 0 for all ξ ∈ K

Proof. If p is a rational prime lying below the prime p, then Λ(ξ) = ∑p Λp(ξ) = ∑p λp(TrKp/Qp(ξ)) =

∑p

(
∑p|p λp(TrKp/Qp(ξ))

)
. Since the global trace map TrK/Q is the sum of local trace

maps TrKp/Qp , we have Λ(ξ) = ∑p λp(TrK/Q(ξ)). As TrK/Q is a rational number, the

problem amounts to showing ∑p λp(x) ≡ 0 mod 1 for rational x. Fix a rational prime

q ̸= p and write ∑p λp(x) as

∑
p

λp(x) = ∑
p ̸=q,∞

λp(x) + λq(x) + λ∞(x)

= ∑
p ̸=q,∞

λp(x) + (λq(x)− x)

Note that from the way λp is defined, we have (λq(x) − x) ∈ Zq and also λp(x) is a

rational number with denominator a p-power.This means that the numerator has some

power of q. Therefore, ∑p λp(x) is a q-adic integer. This completes the proof.

Theorem 37 ([Cas+76] Theorem 4.1.4). If K∗ is the set of all characters of the adele group
AK which are trivial on K, then K∗ = K

Proof. We know that AK is naturally isomorphic to its character group. So, the charac-

ters that are trivial on K are precisely the ones coming from X ∈ K such that Λ(Xη) = 0

for all η. Since K∗
is the character group of AK/K and AK/K is compact therefore K∗

is discrete. Moreover, K ⊆ K∗
by the previous lemma so we can consider the quotient

group K∗/K. As K∗/K is a discrete subgroup of the compact group AK/K, we conclude

that K∗/K is a finite group. But K∗
is a vector space over K and since K is an infinite

field, the index [K∗ : K] cannot be finite unless 1.

2.2.1. Poisson Summation formula

A function φ(X) is said to be periodic if φ(X+ ξ) = φ(X) for all ξ ∈ K. Such peri-

odic functions define a continuous function on the compact quotient group AK/K. Say
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Φ(X+ ξ) := φ(X) defines φ.

Lemma 38 ([Cas+76] Lemma 4.2.1). If φ(X) is continuous and periodic, then∫
D

φ(X)dX =
∫

AK/K
Φ(X)dµ

where µ is the Haar measure with respect to which the quotient group AK/K has measure 1.

Lemma 39 ([Cas+76] Lemma 4.2.2). The Fourier transform φ̂(ξ) of φ(X) continuous on
AK/K is defined by

φ̂(ξ) =
∫

D
φ(X) exp(−2πiΛ(ξX))dX

If φ(X) is continuous and periodic with the additional condition ∑ξ∈K |φ̂(ξ)| < ∞, then

φ(ξ) = ∑
ξ∈K

φ̂(ξ) exp(2πiΛ(ξX))

Proof. The boundedness of the sum ∑ξ∈K |φ̂(ξ)| implies that the Fourier transform ∑ξ∈K φ̂(ξ)

is summable. This means the inversion formula holds. The expression then follows.

Lemma 40 ([Cas+76] Lemma 4.2.3). If

1. f (X) is continuous, belongs to L1(AK)

2. ∑η∈K f (X+ η) is uniformly convergent for X ∈ D

Then, for the resulting continuous, periodic function φ(X) = ∑η∈K f (X+ η) satisfies

φ̂(ξ) = f̂ (ξ)
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Proof.

φ̂(ξ) =
∫

D
φ(X) exp(−2πiΛ(ξX))dX

=
∫ (

∑
η∈K

f (X+ η) exp(−2πiΛ(ξX))

)
dX

= ∑
η∈K

∫
D

f (X+ η) exp(−2πiΛ(ξX))dX since the convergence is uniform on D

= ∑
η∈K

∫
η+D

f (X) exp(−2πiΛ(Xξ − ηξ))dX

= ∑
η∈K

∫
η+D

f (X) exp(−2πiΛ(Xξ))dX since Λ(ηξ) = 0

=
∫

AK

f (X) exp(−2πiΛ(ξX))dX

= f̂ (ξ)

Theorem 41 (Poisson Summation Formula). [[Cas+76] Lemma 4.2.4] If

1. f (X) is continuous, belongs to L1(AK)

2. ∑η∈K f (X+ η) is uniformly convergent for X ∈ D

3. ∑η∈K | f̂ (η)| is convergent

Then

∑
η∈K

f (η) = ∑
η∈K

f̂ (η)

Proof. The hypothesis of the last two lemmas are satisfied, hence we have φ̂(ξ) = f̂ (ξ).

This in turn implies ∑η∈K |φ̂(η)| is convergent. So, we can invoke 39 to get

φ(X) = ∑
ξ∈K

φ̂(ξ) exp(2πiΛ(Xξ)) = ∑
ξ∈K

f̂ (ξ) exp(2πiΛ(Xξ))

Now,

φ(0) = ∑
η∈K

f (η) = ∑
η∈K

f̂ (η)
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2. Global Theory

2.2.2. Riemann-Roch Theorem

When we replace f (X) with f (bX) where b is an idele. Then, we have an analogue of

the Riemann-Roch theorem

Theorem 42 (Riemann-Roch theorem). [[Cas+76] Theorem 4.2.1] If

1. f (X) is continuous, belongs to L1(AK)

2. ∑η∈K f (b(X+ η)) is convergent for all ideles b and X ∈ AK, uniformly convergent for
X ∈ D

3. ∑η∈K | f̂ (bη)| is convergent for all ideles b

Then

∑
η∈K

f (ηb) =
1
|b| ∑

η∈K
f̂ (η/b)

Proof. Consider the function g(X) = f (bX). Then, g satisfies the hypothesis of Poisson-

summation formula 41. Therefore, ∑η∈K g(η) = ∑η∈K ĝ(η). Moreover,

ĝ(X) =
∫

AK

f (bX) exp(−2πiΛ(yX))dy

=
1
|b|

∫
AK

f (y) exp(−2πiΛ(Xy/b))dy

=
1
|b| f̂ (X/b)

This finishes the proof.

Riemann-Roch Theorem (Geometric version)

This section follows [RV99] chapter 7, section §7.2.

Theorem 43 (Riemann-Roch, Geometric form). Let K be a function field in one variable
over Fq. Then there exists an integer g ≥ 0 (called the genus of K) and a divisor D of degree
2g − 2 (called the canonical divisor of K) such that

l(D)− l(D − D) = deg D − g + 1

Some preliminaries:
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2. Global Theory

A divisor of K is a formal linear combination

D = ∑
ν

nνν

where v runs over all the places of K and nv ∈ Z such that nv = 0 for all but finitely

many v. The divisors form an abelian group and is denoted by Div(K). The degree of

a divisor D ∈ Div(K) is defined to be

deg D := ∑
v

nv deg v

where deg v = [Fqv : Fq]. Observe that deg(D + D′) = deg D + deg D′
and hence

deg : Div(K) → Z

is a group homomorphism. The kernel of this map is denoted by Div0(K).

Given f ∈ K×
, we can associate a divisor, called the principal divisor by setting

div f = ∑v ordv( f )v where ordv( f ) is the valuation of f at v. Since ordv( f ) ̸= 0 only

for finitely many v, we note that div( f ) is indeed a divisor, and div( f g) = div( f ) +

div(g). The quotient Div(K)/div(K×) is denoted by Pic(K) called the Picard group of

K. Elements of Pic(K) are called divisor classes. From the product formula we have

∏
v
| f |v = 1

for f ∈ K×
. But | f |v = q−ordv( f )

v = q−degvordv( f )
for all v. Therefore deg div( f ) =

∑v ordv( f )deg v = 0 ⇒ div(K×) ⊆ Div0(K). If div f = divg for f , g ∈ K×
, then

div( f /g) = 0 ⇒ α = f /g is an unit of Ov for all but finitely many v. Such an α must

lie in F×
q . We can summarise this in the following exact sequence:

1 F×
q K× Div0(K) Pic0(K) 0div

We now introduce a partial ordering on Div(K) as follows:

D = ∑
v

nvv ≥ ∑
v

n′
vv = D′
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2. Global Theory

if and only if nv ≥ n′
v for all v. To each divisor D, we can associate

L(D) = { f ∈ K× : div f ≥ −D} ∪ {0}

Since div f has degree 0 for f ∈ K×
, we have L(0) = Fq. Furthermore, L(D) = {0}

if deg D < 0. Notice that L(D) is a vector space over Fq and we write ℓ(D) for the

dimension of L(D).

Lemma 44. For any divisor D, ℓ(D) < ∞

Proof. First we extend our divisor map to ideles:

IK → Div(K)

(xv) 7→ ∑
v

v(xv)v

This map is easily seen to be a surjection. Let f = ∏v fv with fv = 1Ov for all v. Given

any divisor D = ∑v nvv, we can associate an idele x(D) such that v(x(D)v) = nv for

every v. Then, by construction we have for all γ ∈ K×

f (γx(D)) =

1 if v(γx(D)) ≥ 0 ∀v

0 otherwise

Equivalently, for nonzero γ, f (γx(D)) ̸= 0 ⇔ γ ∈ L(D). Since, f is of a "nice" form

(like the ones seen in 23), we deduce that ∑γ∈K f (γx(D)) converges. But from our

analysis, the sum is just #L(D) = qℓ(D)
. Therefore, ℓ(D) < ∞

Proof of 43. Pick a non-trivial character ψ : AK → C×
that is trivial on K. At each v, let

pmv
v be the conductor of the component-character ψv. Since mv = 0 for all but finitely

many v, we get a divisor

D = −∑
v

mvv

If ψ′
is another character of AK such that it is trivial on K, then there exists α ∈ K×

such

that ψ′(x) = ψ(ax) ∀x ∈ AK. If D′
is the divisor associated to ψ′

, then K′ = K+div(α).

Therefore, K is determined uniquely upto principal divisors.

qℓ(D) = ∑γ∈K× f (γx(D)) (2.1)

|x(D)|−1 = ∏v qnv
v = q∑v nv deg v = qdeg D

(2.2)
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We wish to show that

∑
γ∈K

f̂ (γx(D)−1) = qℓ(D−D)−g+1

Remember that f̂v = (Npmv
v )1/21pmv

v
. Therefore

∏
v
(Npmv

v )1/2 = q−degD/2 = q1−g

For γ ∈ K×
, we conclude

f̂ (γx(D)) =

q1−g
if v(γ) ≥ mv + nv

0 otherwise

This implies

∑
γ∈K

f̂ (γx(D)−1) = q1−g#{γ : v(γ) ≥ mv + nv}

= q1−gqℓ(D−D)

= q1−g+ℓ(D−D)

The result now follows from 42.

2.3. Global Multiplicative Theory

2.3.1. Measures and multiplicative fundamental domain

Look at the continuous homomorphism of the ideles onto the multiplicative group of

real numbers b 7→ |b| = ∏p |bp|p. The kernel of this map is a closed subgroup which

we will denote by J and a general element of J will be denoted by h. We want to choose

a subgroup T of IK such that IK = T × J (this is an attempt to replicate Kp = Up × ⟨ϖ⟩).
Let us start.

Choose an Archimedean prime p0 arbitrarily and let T be the set of all elements of IK

such that bp0 > 0 and bp = 1 for p ̸= p0. Such an idele i s determined by its absolute

value. Indeed, if t is the absolute value, then it represents either (t, 1, · · · ) or (
√

t, 1, · · · )
depending on whether p0 is real or complex respectively. Hence, b 7→ |b| restricted to

T is an isomorphism of T to R≥0. Moreover, b = |b|h with |b| ∈ T and h = b|b|−1 ∈ J.
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2. Global Theory

This finishes the decomposition.

Since T is same as R≥0, we can give it the Lebesgue measure dt/t and choose a mea-

sure on J such that b = dhdt
t . This allows us to do the following manipulation for our

computations:

∫
IK

f (b)db =
∫ ∞

0

(∫
J

f (th)dh
)

dt
t

=
∫

J

(∫ ∞

0
f (th)

dt
t

)
dh

Trying to replicate the approach in the section on Additive Global theory, we wish to

define a fundamental domain for J/K×
. The mapping of ideles onto ideals allows us to

define the subgroup JS∞ := J ∩ IK,S∞ . Let S′
∞ be the set of Archimedean places except

p0. Consider the map

L : JS∞ → Rr

b 7→ (log |b|p)p∈S′
∞

where r = r1 + r2 − 1 with r1 denoting the number of inequivalent real embeddings

and r2 the number of inequivalent complex embeddings. The map L is a continuous

homomorphism and is surjective due to weak-approximation theorem.

K× ∩ JS∞ is the group of all elements ϵ ∈ K×
which are units at all finite primes or

equivalently are units in the ring of integers. The units ζ for which L(ζ) = 0 are the

roots of unity in K and forms a finite cyclic group. Dirichlet’s unit theorem says that the

group of units ϵ modulo the roots of unity in K is a free abelian group of r generators. If

{ϵi}r
i=1 is the basis for the group of units modulo roots of unity, the vectors L(ϵi) form

a basis for the r-dimensional space over the real numbers, and we can write for any

h ∈ JS∞ ,

L(h) =
r

∑
i=1

xiL(ϵi)

with unique real numbers xi. If

P := {
r

∑
i=1

xiL(ϵi) : 0 ≤ xi < 1} , and Q = {(· · · , xp, · · · )p∈S′
∞

: 0 ≤ xp < 1}
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then we have the following

Lemma 45 ([Cas+76] Lemma 4.3.1).

∫
L−1(P)

dh =
2r1(2π)r2√

|d|
R

where R = ±det(log |ϵi|p)1≤i≤r,p∈S′
∞

is called the regulator of K.

Definition 46. Let h be the class number of K, and select ideles h(1), h(2), . . . , h(h) ∈ J such
that the corresponding ideals ιh(1), ιh(2), . . . , ιh(h) represent the different ideal classes. Let w

be the number of roots of unity in K. Let E0 be the subset of all b ∈ L−1(P) such that 0 <

arg bp0 < 2π/w. We define the multiplicative fundamental domain E for J/K× by

E = E0h
(1) ∪ E0h

(2) ∪ · · · ∪ E0h
(h)

Theorem 47 ([Cas+76] Theorem 4.3.2). 1. J =
⊔

α αE , a disjoint union.

2. ∫
E

dh =
2r1(2π)r2 hR√

|d|w
Proof. 1. Take an element h ∈ J. We will find an element β such that h ∈ αE. Con-

sider the ideal ιh. It must belong to one of the equivalence classes ιh(i). Then,

ι(h/h(i)) is principal. Suppose it is αO, then ι(h/(h(i)α)) = O and therefore

h/(h(i)α) must be in the kernel of ι that is JS∞ . Using the basis, we have

L
(

h

h(i)α

)
=

r

∑
i=1

xiL(ϵi)

where xi ∈ R. If [·] is the greatest integer function, then t =
h

h(i)α
∏

i
ϵ
[xi]
i has

image in P under the map L. Therefore, t ∈ L−1(P). We now want to take care

of the argument of the p0-th component. Take a root of unity with the closest

argument to the argument of tp0 and thus t/ζ will bring us to E0. This completes

the proof.

2. The integral is h× (measure of E0) =

h
w
× (measure of L−1(P)). Now, plugging in

the value obtained in last lemma, we get that the value of the integral is

h
w

2r1(2π)r2√
|d|

R
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Corollary 48 ([Cas+76] Corollary 4.3.1). K× is a discrete subgroup of J and therefore J/K×

is compact.

Proof. Since E has non-zero measure, it has an interior in J. This proves that K×
is

discrete in J. As E is also relatively compact, J/K×
is compact as well.

Remark 49. Since K× is a discrete subgroup of J, therefore it is also discrete in IK.

2.3.2. Characters

We will only concern ourselves with the characters of IK that are trivial on K×
. Such

characters are called Hecke characters. So, when we say character after this point, we

will have such a character in mind. Note that a quasi-character is a character on J since

|χ(b)| = 1 for b ∈ J since J/K×
is compact. Also, the characters of IK that are trivial

on J are exactly of the form χ(a) = |a|s where s ∈ C is uniquely determined by χ(a).

Indeed, if χ(a) is trivial on J, then χ(a) depends on |a| and is therefore just a character

of the value group (R>0, ·) given by |a| 7→ |a|s for s ∈ C.

We say two characters are equivalent if and only if they agree on the subgroup J.

For every quasi-character χ(a), there exists a unique real number σ such that |χ(a)| =
|a|σ. We call such a σ the exponent of χ.

2.4. The Global ζ-function and functional equation

In the following section, f (X) denotes a complex-valued function on the adeles and

f (b) its restriction to the ideles. The class Z denotes functions f such that

1. f (X) and f̂ (X) are both continuous, ∈ L1(AK)

2. ∑ξ∈K f (b(X+ ξ)) and ∑ξ∈K f̂ (b(X+ ξ)) are both convergent for each idele b and

adeles X. The convergence is uniform for X ranging over D and b ranging over

any compact subset of IK

3. f (b)|b|σ and f̂ (b)|b|σ ∈ L1(IK) for σ > 1

Remark 50. 1. The first two conditions allows us to use Riemann-Roch theorem
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2. The last condition allows us to define the zeta function as follows.

Definition 51. For each f ∈ Z, we can define the function ζ( f , χ) on the domain of quasi-
characters with exponent greater than 1 by

ζ( f , χ) =
∫

f (b)χ(b)db

We call such a function a zeta-function of K.

Theorem 52 (Main theorem of Global theory: Analytic continuation and Functional

equation). [[Cas+76] Theorem 4.4.1] By analytic continuation, we can extend the definition of
any zeta function ζ( f , χ) to the domain of all quasi-characters. The extended function is single-
valued and regular, except at χ(b) = 1 and χ(b) = |b| where it has simple poles with residues
−κ f (0) and κ f̂ (0) respectively. (κ is the volume of the multiplicative fundamental domain).
Moreover, ζ( f , χ) satisfies the functional equation

ζ( f , χ) = ζ( f̂ , χ∨)

Proof. For χ of exponent σ > 1, we have

ζ( f , χ) =
∫ ∞

0

(∫
J

f (th)dh
)

dt
t

Set ζt( f , χ) =
∫

J f (th)dh

=
∫ 1

0
ζt( f , χ)

dt
t
+
∫ ∞

1
ζt( f , χ)

dt
t

Consider the second integral

∫ ∞

1

∫
J

f (ht)χ(ht)dh
dt
t

is simply ∫
b∈IK :|b|≥1

f (b)χ(b)db
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If σ > 1, then ∫
b∈IK :|b|≥1

| f (b)||b|σdb

is definitely finite due to the third condition in the hypothesis of f ∈ Z. The integral

with σ ≤ 1 is bounded by the integral with σ > 1 and therefore, the integral is defined

for quasi-characters of all exponents. This solves half our problem. Now, we need to

analyse ∫ 1

0
ζt( f , χ)

dt
t

This is done by using Riemann-Roch theorem. Let us see how to do that.

Lemma 53 ([Cas+76] Lemma A §4.4). For all quasi-characters χ, we have

ζt( f , χ) + f (0)
∫

E
χ(th)dh = ζ1/t( f̂ , χ∨) + f̂ (0)

∫
E

χ(h/t)∨dh

Proof.

ζ f ( f , χ) + f (0)
∫

E
χ(th)dh = ∑

α∈K×

∫
αE

f (th)χ(th)dh+ f (0)
∫

E
χ(th)dh (2.3)

= ∑
α∈K×

∫
E

f (αth)χ(th)dh+ f (0)
∫

E
χ(th)dh (2.4)

=
∫

E

(
∑

α∈K×
f (αth)

)
χ(th)dh+ f (0)

∫
E

χ(th)dh (2.5)

=
∫

E

(
∑

α∈K
f (αth)

)
χ(th)dh (2.6)

=
∫

E

(
∑

α∈K
f̂ (α/th)

)
1
|th|χ(th)dh (2.7)

=
∫

E

(
∑

α∈K
f̂ (α/th)

)
χ

(
h

t

)∨
dh (2.8)

(3.3) follows simply from the definition and using J = ∪ααE. (3.3) → (3.4) follows

from the substitution h 7→ αh and observing that d(αh) = dh, χ(αth) = χ(th). (3.4) →
(3.5) is possible due to the uniform convergence hypothesis for f ∈ Z. (3.6) → (3.7)

follows from Riemann-Roch theorem. (3.7) → (3.8) follows from the substitution h 7→
1/h. The proof is hence complete.
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Lemma 54 ([Cas+76] Lemma B §4.4).

∫
E

χ(th)dh =

κts χ(b) = |b|s

0 χ(h) is not trivial on J

Back to the proof of the theorem. The

∫ ∞
1 was handled earlier. We will convert our∫ 1

0 to

∫ ∞
1 now.

∫ 1

0
ζt( f , χ)

dt
t
=
∫ 1

0
ζ1/t( f̂ , χ∨)

dt
t
+

(∫ 1

0
κ f̂ (0)

(
1
t

)1−s dt
t
−
∫ 1

0
κ f (0)ts dt

t

)

Note that due to the lemma above, the term in (· · · ) is to be included only when χ is a

character trivial on J. Now, make a substitution t → 1/t in the right hand side to get

∫ 1

0
ζt( f , χ)

dt
t
=
∫ ∞

1
ζt( f̂ , χ∨)

dt
t
+

(
κ f̂ (0)
s − 1

− κ f (0)
s

)

This in turn implies

ζ( f , χ) =
∫ ∞

1
ζt( f , χ)

dt
t
+
∫ ∞

1
ζt( f̂ , χ∨)

dt
t
+

(
κ f̂ (0)
s − 1

− κ f (0)
s

)

Both the integrals are defined for all quasi-characters χ. Hence, we have an analytic

continuation of ζ( f , χ) to the domain of all quasi-characters. Also, if χ(b) = 1 then

s = 0 and we get the residue −κ f (0) and if χ(b) = |b| we get s = 1 and hence the

residue is κ f̂ (0). Moreover,

ζ( f̂ , χ∨) =
∫ ∞

1
ζt( f̂ , χ∨)

dt
t
+
∫ ∞

1
ζt(
̂̂f , χ∨∨)

dt
t
+

(
κ f̂ (0)
s − 1

− κ f (0)
s

)

Since,

ζ( f̂ , χ∨)
dt
t
=
∫

J
f (−th)χ(th)h

dt
t
=
∫

J
f (th)χ(th)h

dt
t

(2.9)

The last equality comes from the fact that under the transformation −t 7→ t; dt/t 7→
dt/t and χ(−1) = 1 as χ is trivial on K×

. All of this allows us to conclude

ζ( f , χ) = ζ( f̂ , χ∨)
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3. The thesis as the GL1 case of

automorphic forms

This chapter will be vague and will mostly try to contrast Tate’s theory to the general

theory of automorphic forms. We will often seek refuge in Bump’s book for the proofs

of the statements. I will provide citations for the exact statements. This chapter follows

[bump1997] §3.2, §3.3, §3.4, §3.5, and all notations here are exactly the same as Bump.

I will clarify notations at the beginning of each section but in case of ambiguity, please

refer to Bump.

3.1. Classical Automorphic forms and representations

Let G = GL(2, R)+ be the group of 2 × 2 real matrices with positive determinant.

We know that G acts on the Poincare upper half plant H by fractional linear trans-

formations. Let Z(R) be the center of group, which are just the scalar matrices and let

K = SO(2) be the maximal compact subgroup. Let Γ be a discrete subgroup of G, fur-

ther assume that Γ actually is contained in SL(2, R). We will assume that −I ∈ Γ and

Γ\H has finite measure. We assume that Γ\H is non-compact. Let χ be a character of Γ

and ω a character of Z(R); assume that χ(−1) = ω(−1).

The group G acts on C∞(G) by right translation. Let the representation be ρ defined

by (ρ(g)F)(x) = F(xg). There is also a derived action of the Lie algebra g, the action is

given by

XF(g) =
d
dt

F(g exp(tX))|t=0, F ∈ C∞(G)

This action of g extends to an action of the universal enveloping algebra U(g) or its

complexification U(gC). The center Z of U(gC) is a polynomial ring in two variables:
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3. The thesis as the GL1 case of automorphic forms

Z = C[Z, ∆] where

R =
1
2

(
1 i

i −1

)
, L =

1
2

(
1 −i

−i −1

)
, H = −i

(
0 1

−1 0

)
, Z =

(
1 0

0 1

)

∆ = −1
4
(H2 + 2RL + 2LR)

The action of G on H by fractional linear transformations extends to an action on the

boundary of H in the Riemann sphere, which is R ∪ {∞}. A cusp of Γ is a point of

R ∪ {∞} whose stabiliser in Γ contains a nontrivial unipotent matrix. The number of

orbits of the cusps under the action of Γ is finite. We know that there is atleast one cusp

since Γ\H was assumed to be non-compact.

Definition 55. Let F ∈ C∞(G). We say that F is K-finite if the functions ρ(k)F, k ∈ K span a
finite dimensional vector space over C, and F is contained in a finite dimensional Z-invariant
subspace.

Definition 56. Let C(Γ\G, χ, ω) be the space of continuous functions F : G → C such that

F(γg) = χ(γ)F(g); γ ∈ Γ, g ∈ G

and
F(zg) = ω(z)F(g); z ∈ Z(R), g ∈ G

Let C∞(Γ\G, χ, ω) be the space of smooth functions in C(Γ\G, χ, ω), and Cc(Γ\G, χ, ω) be
the subspace of compactly supported functions modulo Z(R) in C(Γ\G, χ, ω).

Definition 57. An element F is called an automorphic form if F ∈ C∞(Γ\G, χ, ω), is K-finite,
Z-finite and there exists constants C, N such that

|F(g)| < C||g||N; g ∈ G

the inequality is called the condition of moderate growth. The space of such automorphic forms
is denoted by A(Γ\G, χ, ω)

Definition 58. Let F ∈ A(Γ\G, χ, ω). We first define cuspidality at ∞. Γ contains an element
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3. The thesis as the GL1 case of automorphic forms

of the form τr =

(
1 r

0 1

)
. We say F is cuspidal at ∞ if either χ(τr) ̸= 1 or

∫ r

0
F

((
1 x

0 1

)
g

)
dx = 0

Now, if a is an arbitrary cusp, we can choose a ξ ∈ SL(2, R) such that ξ(∞) = a. Then,
F′(g) = F(ξg) defines an element of L2(Γ′\G, χ′, ω) where Γ′ = ξ−1Γξ, χ′ is a character
χ′(γ) = χ(ξγξ−1) of Γ′. We say F is cuspidal at a if F′ is cuspidal at ∞ which has been defined
before.

If F is cuspidal at all cusps a of Γ then we say F is a cusp form. The space of cusp forms in
A(Γ\G, χ, ω) is denoted by A0(Γ\G, χ, ω).

Definition 59. A (g, K)-module is a vector space V together with representations π of K and
of g subject to the conditions:

1. V decomposes into an algebraic direct sum of finite dimensional invariant subspaces under
the action of K.

2. The representations of g and K are "compatible", i.e. π(X) f = X f =
d
dt

π(exp(tX)) f |t=0

for all X ∈ k and f ∈ V.

3. π(g)π(X)π(g−1) f = π(Ad(g)X) f is valid when g ∈ K, X ∈ g

We say a (g, K)-module V is admissible the isotypic component V(σ) = {v ∈ V : π(k)v =

σ(k)v} is finite dimensional for each character σ of K

Theorem 60. The spaces A(Γ\G, χ, ω) and A0(Γ\G, χ, ω) are stable under the action of
U(gC). If f ∈ A(Γ\G, χ, ω), then U(gC) f is an admissible (g, K)-module. If f satisfies
the moderate growth condition, and D ∈ U(gC), then D f satisfies a similar estimate with the
same constant N

Definition 61. Let c, d be positive constants. Then we define Siegel set Fc,d by

Fc,d := {z = x + iy : 0 ≤ x ≤ c, y ≥ c}

Proposition 62. 1. Let a1, . . . , ah ∈ R∪ {∞} be the representatives of the Γ orbits of cusps
of Γ, and let ξi ∈ SL(2, R) be chosen such that ξi(ai) = ∞. If c, d > 0 are chosen
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3. The thesis as the GL1 case of automorphic forms

properly, then the set ⋃
ξ−1

i Fc,d

contains a fundamental domain for Γ.

2. Suppose that ∞ is a cusp of Γ. Then, if d is large enough, Fd,∞ contains a fundamental
domain of Γ.

The above is an important proposition and comes up in the proof of the following

Theorem 63 (Gelfand, Graev and Piatetski-Shapiro). Let ϕ ∈ C∞
c (G).

1. There exists a constant C depending on ϕ such that for all f ∈ L2
0(Γ\G, χ, ω), we have

sup
g∈G

|ρ(ϕ) f (g)| ≤ C|| f ||2

where

|| f ||2 =

√∫
G/Z(R)

| f (g)|2dg

2. The restriction of this operator to L2
0(Γ\G, χ, ω) is a compact operator.

This in turn lets us conclude a fundamental theorem in the theory

Theorem 64. The space L2
0(Γ\G, χ, ω) decomposes into a Hilbert space direct sum of subspaces

that are invariant and irreducible under the right regular representation ρ. Let H be such a
subspace. The K-finite vectors H f in H are dense, and every K-finite vector is an element of
C∞(Γ\G, χ, ω). The K-finite vectors form an irreducible admissible (g, K)-module contained
in A0(Γ\G, χ, ω).

3.2. Automorphic representations of GL(n)

Let F be a number field, A its adele ring. Let A f be the ring of finite adeles, which is a

(g∞, K∞)-module where g∞ = ∏v inS∞ gl(m, Fv), K∞ = ∏v∈S∞ Kv. Note that A = F∞A f

where F∞ is the set of all elements (av) such that av = 1 for every Archimedean place v.

The group GL(n, A) can be thought of as the restricted product of GL(n, Fv) with

respect to the subgroups GL(n, ov) which are the maximal compact subgroups for non-

Archimedean v. The group GL(n, A) is unimodular, i.e. the left and right invariant
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3. The thesis as the GL1 case of automorphic forms

Haar measures coincide. The subgroup GL(n, F) is a discrete subgroup of GL(n, A);

follows from the fact that F is discrete in A. Now, if G is an algebraic group defined

over F, then we have G(A) = G(F∞)G(A f ). We do not have cocompactness of Gl(n, F)

in GL(n, A), so we instead work with a slightly weaker result

Proposition 65. Let A be the adele ring of the global field F. Then, the quotient space Z(A)GL(n, F)\GL(n, A)

has finite measure.

This result follows from the following "strong approximation theorem":

Theorem 66 (Strong approximation theorem). Let F be an algebraic number field.

1. SL(n, F∞)SL(n, F) is dense in SL(n, A).

2. Let K0 be an open compact subgroup of GL(n, A f ). If the image of K0 in A×
f under the

determinant map is ∏v ̸∈S∞o×v
, then the cardinality of

GL(n, F)GL(n, F∞)\GL(n, A)/K0

is equal to the class number of F.

Like the classical theory, we want a maximal compact subgroup of GL(n, A). Let

K = ∏v Kv where Kv is O(n) if v is a real place, Kv is U(n) is a complex place, and

Kv is GL(n, ov) when v is non-Archimedean. It is clear that K is compact by Tychonoff

theorem, in fact K is maximal among the compact subgroups of GL(n, A) and every

maximal compact subgroup is conjugate to K.

let ω be a unitary Hecke character, that is, a unitary character of A×/F×
. Let L2(GL(n, F)\GL(n, A), ω)

be the space of all functions ϕ on GL(n, A) that are measurable with respect to Haar

measure and satisfy ϕ(γg) = ϕ(g), γ ∈ GL(n, F), and

ϕ




z
.
.
.

z

 g

 = ω(z)ϕ(g); z ∈ A×

and, also satisfies the square integrability modulo center condition :∫
Z(A)GL(n,F)\GL(n,A)

|ϕ(g)|2dg < ∞
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3. The thesis as the GL1 case of automorphic forms

Definition 67. We say ϕ ∈ L2(GL(n, F)\GL(n, A), ω) is cuspidal if the condition

∫
Mr(F)\Ms(A)

ϕ

((
Ir X

Is

)
g

)
dX = 0

is true for all r, s such that r + s = n.
Let L2

0(GL(n, F)\GL(n, A), ω) be the closed subspace of cuspidal elements of the Hilbert space
L2(GL(n, F)\GL(n, A), ω).

The action of GL(n, A) on L2(GL(n, F)\GL(n, A), ω) is through right translation:

(ρ(g)ϕ)(x) = ϕ(xg), g, x ∈ GL(n, A)

The cuspidal subspace L2
0(GL(n, F)\GL(n, A), ω) is invariant under the action. Our

objective is to prove a theorem analogous to 64. For this, we need a theorem analogous

to 63. For this, let us define the space of functions C∞
c (GL(n, A)) as follows: all finite

linear combinations of functions π(g) = ∏v ϕv(gv) where fore each place v, ϕv is an

element of C∞
c (GL(n, Fv)) and for all but finitely many v, ϕv is the characteristic function

of GL(2, ov). For f ∈ L2(GL(n, F)\GL(n, A), ω), we define

(ρ(ϕ) f )(g) =
∫

GL(n,A)
ϕ(h) f (gh)dh

Theorem 68 (Gelfand, Graev, and Piatetski-Shapiro). Let ϕ ∈ C∞
c (GL(n, A)).

1. There exists a constant C depending on ϕ such that for all f ∈ L2
0(GL(n, F)\GL(n, A), ω),

we have
sup

g∈GL(2,A)

|ρ(ϕ) f (g)| ≤ C|| f ||2

where

|| f ||2 =

√∫
G/Z(R)

| f (g)|2dg

2. The restriction of this operator to L2
0(GL(n, F)\GL(n, A), ω) is a compact operator.

As a consequence,

Theorem 69. The space L2
0(GL(n, F)\GL(n, A), ω) decomposes into a Hilbert space sum of

irreducible invariant subspaces.
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3. The thesis as the GL1 case of automorphic forms

Definition 70. An automorphic form with central quasi-character ω is a function on GL(n, A)

satisfying ϕ(γg) = ϕ(g), γ ∈ GL(n, F), and

ϕ




z
. . .

z

 g

 = ω(z)ϕ(g); z ∈ A×

, and is smooth, K-finite, Z-finite, and of moderate growth.

Now, I shall explain all these conditions:

1. For a function field F, smooth means that f is locally constant. For a number field

F, smoothness means for every g ∈ GL(n, A) there is a neighbourhood U of g and

a smooth function fg on GL(n, F∞) such that for all h ∈ U, f (h) = fg(h∞) where

h∞ is the infinite part of h.

2. A function f is said to be K-finite if the right translation by elements of K gives a

finite dimensional vector space.

3. If v is an Archimedean place, then the action of gl(n, Fv) can be defined on the

K-finite vectors by

(X f )(g) =
d
dt

f (g exp(tX))|t=0

We can extend this action of gl(n, Fv) to the universal enveloping algebra U(gl(n, Fv)).

Let Z be the center of the universal enveloping algebra. Now, Z-finiteness means

that f lies in a finite dimensional vector space invariant under the action of Z .

4. For the moderate growth condition, we have to define a height function. Note

that we can embed GL(n) → An2+1
via g 7→ (g, (det g)−1). We define the local

height on ||gv||v on GL(n, Fv) by ||g||v = max1≤i≤n2+1 |gi|v and the global height

is defined to be the product of local heights. Then, f has moderate growth if there

are constants C, N such that f (g) < C||g||N for all g ∈ GL(n, A).

The space of automorphic forms with central quasi-character is denoted byA(GL(n, F)\GL(n, A), ω)

and the subspace of cusp forms is denoted by A0(GL(n, F)\GL(n, A), ω)

Remark 71. In Tate’s thesis, we note that the idele group is A× = GL(1, A). A central
quasi-character is a character ω : GL(1, A) → S1. We have seen that such a character
decomposes into ωχ(·)| · |s. Since ϕ is an automorphic form such that ϕ(g) = ϕ(1)ω(g).
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3. The thesis as the GL1 case of automorphic forms

Therefore, any automorphic form on GL(1, A) is of the form cω for c ∈ C. Moreover, ϕ must
be constant on GL(1, A). This means it is a continuous mopping from the compact group
GL(1, F)\GL(n, A) → C× and hence the image must be in S1. So, the central quasi-character
ω is infact a Hecke character which is what we studied.

Definition 72. Suppose we have an infinite family of vector spaces Vv indexed by a set Σ. For
all but finitely many v, we are given nonzero x◦v ∈ Vv. Let Ω be the set of all finite subsets S of Σ

such that if v ̸∈ S then x◦v is defined. We can order Ω by inclusion and make it a directed set. If
S, T ∈ Ω such that S ⊆ T, then we can define a homomorphism λS,T :

⊗
v∈S Vv → ⊗

v∈T Vv

by sending x to x tensored with ⊗v∈T\Sx◦v . These maps form a direct family and we can define
the restricted tensor product as ⊗

v
Vv := lim−→

⊗
v∈S

Vv

The above construction can be interpreted similarly as the restricted product topol-

ogy that gives rise to structures like the adele rings, idele groups. Now, let us record an

important theorem regarding restricted tensor product.

Theorem 73 (Tensor product theorem). let (V, π) be an irreducible admissible representa-
tion of GL(n, A). Then there exists for each Archimedean place v of F, and irreducible admissible
(g∞, Kv)-module (πv, Vv), and for each non-Archimedean place v there exists an irreducible ad-
missible representation (πv, Vv) of GL(n, Fv) such that for all but finitely many v, Vv contains
a nonzero Kv-fixed vector ξ◦v such that π is the restricted tensor product of the representations
πv.

I will now explain the terms "admissible , irreducible " representations of GL(n, A).

Definition 74. Let (π, V) be a representation of K, and let (ρ, Vρ) be an irreducible finite di-
mensional representation of K. Let V(ρ) be the sum of all K-submodules of V that are isomorphic
to K. We call V(ρ) the ρ-isotypic component of (V, π).
Let V be a complex vector space that has an action of (g∞, K∞) and GL(n, A f ) and represent
both by the same π and the representation by (π, V). We can further assume that the two ac-
tions commute. We can also assume that every vector v ∈ V is K-finite, and if ρ is an irreducible
finite dimensional representation of K, then we say π is admissible if the ρ-isotypic part V(ρ)

is finite dimensional. The notion for admissible representations for GL(n, Fv) is also defined
similarly.
For v non-Archimedean, and (πv, Vv) an irreducible representation, we say πv is spherical if
Vv contains a nonzero Kv-fixed vector.
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3. The thesis as the GL1 case of automorphic forms

We end this section by stating an important theorem which will serve as motivation

in our construction of Whittaker models.

Theorem 75 (Multiplicity one). Let (π, V) and (π′, V′) be two irreducible admissible sub-
representations of A0(GL(n, F)\GL(n, A), ω). If πv ∼= π′

v for all Archimedean v and all but
finitely many non-Archimedean v, then V = V′

3.3. Zeta-functions attached to automorphic

representations

3.3.1. Whittaker models

The last theorem’s proof requires the construction of Whittaker models. The Whittaker

models will be used to prove the local multiplicity one theorem which in turn will lead

to the prove of the global or the normal (read as the English word normal) multiplicity

one theorem for n = 2. Let us look at the statement of local multiplicity one theorem.

Theorem 76 (Local multiplicity one). Let F be a non-Archimedean local field, ψ a nontrivial
additive character of F, and let (π, V) be an irreducible admissible representation of GL(2, F).
Then, upto a constant multiple, there exists at most one linear functional Λ on V such that

Λ

(
π

(
1 x

1

)
ξ

)
= ψ(x)Λ(ξ) x ∈ F, ξ ∈ V

Definition 77. A non-zero linear functional Λ on V satisfying the condition in the last theorem
is called a Whittaker functional with respect to V.

Notice that the local multiplicity one theorem only deals with non-Archimedean

places. If one wants to prove it for a number field, one has to deal with Archimedean

places as well. We have to be able to get a result that combines both Archimedean and

non-Archimedean places. For this, we need to look at an equivalent form of the local

multiplicity one theorem.

Theorem 78. Let F be a non-Archimedean local field, ψ a non-trivial additive character of F,
and let (π, V) be an irreducible admissible representation of GL(2, F). Then there exists at most
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3. The thesis as the GL1 case of automorphic forms

one space W of functions on GL(2, F) such that if W ∈ W , then

W

(
π

(
1 x

1

)
ξ

)
= ψ(x)W(ξ) x ∈ F, ξ ∈ V

and such that W is closed under right translation by elements of GL(2, F), and the resulting
representation is isomorphic to π.

Definition 79. The space of functions W satisfying the conditions of the last theorem is called
a Whittaker model for the representation (π, V) with respect to ψ.

We want to be able to handle both Archimedean and non-Archimedean local fields.

Let us see how to achieve this. Suppose F is a local field F, G = GL(2, F), K the maximal

compact subgroup and HG the Hecke algebra which is C∞
c (G) if F is non-Archimedean

and convolution algebra of distributions on G that are K-finite and have support con-

tained in K. There is a natural action of HG on C∞
c (G) which we denote by ϕ.

Let V be a simple admissible HG-module. The Whittaker model of (π, V) with respect

to a fixed nontrivial additive character ψ of F is the space of all functions W : G → C

such that

W

(
π

(
1 x

1

)
ξ

)
= ψ(x)W(ξ) x ∈ F, ξ ∈ V

We assume that the functions in W are smooth and satisfy a growth condition: for a

fixed g ∈ G, W ∈ W , the function

W

(
π

(
1 x

1

)
ξ

)

is bounded by a polynomial in |y| as |y| → ∞. We also assume that there exists a vector

space isomorphism ξ 7→ Wξ of V onto W such that if ξ ∈ V and ϕ ∈ HG, we have

Wπ(ϕ)ξ = ρ(ϕ)Wξ

Now,

Proposition 80. Let F be a local field, ψ a nontrivial additive character of F and let (π, V) be
a simple admissible HG-module. Then, (π, V) has atmost one Whittaker model with respect to
ψ.
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Proposition 81. Let F be a local field, ψ a nontrivial additive character of F and let (π, V) be
a simple admissible HG-module. Let W be a Whittaker model of (π, V) with respect to ψ, and
let ξ 7→ Wξ be the isomorphism discussed. Then, there exists a ξ ∈ V such that Wξ(1) ̸= 0. If
V is non-Archimedean and π is spherical, and if the conductor of ψ is the ring of integers o of
F, then we may take ξ to be GL(2, o)-invariant.

So, what we have constructed till now are Whittaker functions and Whittaker models

for local fields. Now, we will define global Whittaker models.

Let F be a global field, and Σ the set of all places of F. If v ∈ Σ, let Hv = HGL(2,Fv) be

the local Hecke algebra and let H = HGL(2,A) =
⊗

v Hv be the restricted tensor prod-

uct of Hv with respect to the spherical idempotents e◦v. Let ψ be a non-trivial additive

character of A trivial on F. Let (π, V) be an irreducible admissible GL(2, A)-module.

We write π as π = ⊗vπv with (πv, Vv) an irreducible admissible Hv-module, and the

tensor product is the restricted product with respect to ξ◦v where ξ◦v is spherical for all

but finitely many v.

By a Whittaker model of π with respect to the non-trivial character of A/F, we mean a

space of functions W of K-finite functions on GL(2, A) such that

W

(
π

(
1 x

1

)
ξ

)
= ψ(x)W(ξ) x ∈ F, ξ ∈ V

We assume that the functions W ∈ W are of moderate growth. We assume that the

space W is closed under the action ρ of H on the K-finite functions and isomorphic as

a H-module to V. It is assumed that there exists an isomorphism ξ 7→ Wξ of V onto W
such that

Wπ(ϕ)ξ = ρ(ϕ)Wξ ϕ ∈ H, ξ ∈ V

The existence and uniqueness of such Whittaker models is given in [bump1997] §3.5.

I will just state the existence and uniqueness theorems of global Whittaker models.

Theorem 82 (Existence of Global Whittaker models). Let F be a global field, A its adele ring,
and let (π, V) be an automorphic cuspidal representation of GL(2, F), so V ⊆ A0(GL(2, F)\GL(2, A), ω),
where ω is a character of A×/F×. If ϕ ∈ V and g ∈ GL(2, A), let

Wϕ(g) =
∫

A/F
ϕ

((
1 x

1

)
g

)
ψ(−x)dx
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Then the space W of functions Wϕ is a Whittaker model for π. We have the expansion

ϕ(g) = ∑
α∈F×

Wϕ

((
α

1

)
g

)

Theorem 83 (Uniqueness of Global Whittaker models). Let (π, V) be an irreducible ad-
missible representation of GL(2, A). (π, V) has a Whittaker model W with respect to ψ if and
only if each (πv, Vv) has a Whittaker model Wv with respect to the character ψv of Fv. If this is
the case, then W is unique and consists of all finite linear combinations of functions of the form
W(g) = ∏v Wv(gv) where Wv ∈ Wv and Wv = W◦

v for almost all v where W◦
v is the spherical

element of Wv, normalised so that W◦
v (kv) = 1 for kv ∈ GL(2, ov).

3.3.2. Local and Global functional equation

Let q be the cardinality of the residue field o/⟨ϖ⟩. We say

L(s, π) = (1 − α1q−s)−1(1 − α2q−s)−1

is the local L-function of π. Let ξ be a nonramified character of F×
. We define

L(s, π, ξ) = (1 − α1ξ(ϖ)q−s)−1(1 − α2ξ(ϖ)q−s)−1

Let F be a global field, (π, V) an automorphic cuspidal representation of GL(2, A).

We assume that the central quasicharacter ω of π is unitary. Write π = ⊗vπv. Let S be

a finite set of places such that if v ̸∈ S, then πv is spherical. If v ̸∈ S, let Lv(s, πv) be the

local L-function as defined in the previous paragraph. Let

LS(s, π) = ∏
v ̸∈S

Lv(s, πv)

be the S-depleted L-function. We will use the existence and uniqueness theorems of

global Whittaker models to get a functional equation for LS(s, π). This goes through

the same process as what we went through while reading Tate’s thesis. Let us see it

through the following steps:

1. For ϕ ∈ V, we have ϕ

(
y

1

)
is rapidly decreasing as |y| → ∞, i.e. for any N > 0
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3. The thesis as the GL1 case of automorphic forms

there is a constant CN such that ϕ

(
y

1

)
< CN|y|−N

for sufficiently large |y|.

Therefore, the "global zeta integral" defined as

Z(s, ϕ) =
∫

A×/F×
ϕ

(
y

1

)
|y|s−1/2d×y

is absolutely convergent for all values of s. We can use the existence of global

Whittaker models to convert our integral to

Z(s, ϕ) =
∫

A×
Wϕ

(
y

1

)
|y|s−1/2d×y

provided that it converges absolutely. The vector ϕ corresponds to the pure tensor

⊗vϕv. Let Wv ∈ Wv be the element of the local Whittaker model corresponding

to the vector ϕv ∈ Vv. Then, by the Uniqueness of the Whittaker model, we have

W(g) = ∏
v

Wv(gv)

If we write the idele y = (yv) then the integrand can be written as

∏
v

Wv

(
yv

1

)
|yv|s−1/2

and hence the global zeta integral becomes the product

Z(s, ϕ) = ∏
v

Zv(s, Wv)

where

Zv(s, Wv) =
∫

F×
v

Wv

(
yv

1

)
|yv|s−1/2d×yv

2. Now, a place v is said nonramified if v is non-Archimedean, πv is a spherical

principal series, the conductor of the additive character ψv is ov, the vector ϕv

is the spherical vector in the representation, and the Whittaker functional Wv is

normalised so that Wv(1) = 1. We can show that

Proposition 84. If v is nonramified, then for s sufficiently large, then Zv(s, Wv) =
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Lv(s, πv)

3. We can generalise these integrals by twisting with an idele class character or

Hecke character ξ (or more explicitly, it is a character of A×/F×
). We can now

define

Z(s, ϕ, ξ) =
∫

A×/F×
ϕ

(
y

1

)
|y|s−1/2ξ(y)d×y

And, by similar reasoning as before, we have

Z(s, ϕ, ξ) =
∫

A×
Wϕ

(
y

1

)
|y|s−1/2ξ(y)d×y

and again, we can decompose this integral into a product

Z(s, ϕ, ξ) = ∏
v

Zv(s, Wv, ξv)

where

Zv(s, Wv, ξv) =
∫

F×
v

Wv

(
yv

1

)
ξv(yv)|yv|s−1/2d×yv

The thing to notice is that the global zeta integral is defined for all s, but the local

zeta integrals are defined only for sufficiently large s. We wish to analytically

continue this to the entire complex plane and such a continuation can be achieved

as seen in the following

Theorem 85 (Local functional equation). The local zeta integral Zv(s, Wv, ξv) defined
for Re(s) sufficiently large, has a meromorphic continuation to all of s. There exists a
meromorphic function γv(s, πv, ξv, ψv) such that

Zv(1 − s, πv(w1)Wv, ξ−1
v w−1

v ) = γv(s, πv, ξv, ψv)Zv(s, Wv, ξv)

where w1 =

(
1

−1

)

Here, γv(s, πv, ξv, ψv) plays a similar role to ρ(χ) in the functional equation of the

local zeta function in Tate’s thesis.

4. Let S be a finite set of places of the global field F. Suppose S contains all the
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Archimedean places and that if v ̸∈ S, then πv is spherical. We define the S-

depleted L-function

LS(s, π) = ∏
v ̸∈S

Lv(s, πv)

If ξ is a Hecke character and ξv is nonramified for v ̸∈ S, then we can also define

LS(s, π, ξ) = ∏
v ̸∈S

Lv(s, πv, ξv)

We now state

Theorem 86 (Global functional equation). Let π be an automorphic cuspidal represen-
tation of GL(2, A). Let ξ be a Hecke character of F, S a finite set of places of F containing
the Archimedean places and if v ̸∈ S, then πv is spherical and ξv is nonramified and the
additive character ψv has conductor ov. Then,

LS(s, π, ξ) = ∏
v∈S

γv(s, πv, ξv, ψv)LS(1 − s, π̂, ξ−1)

where π̂ is the contragredient representation.

We can define the local L-factors for the remaining places so that they are compatible

with the ones we saw in Tate’s thesis. Details can be found in [Bump]. This completes

our exposition.
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measure

This chapter follows [RV99] chapter 1.

Definition 87. A topological group is a topological space G such that the two maps

m : G × G → G

(x, y) 7→ xy

ι : G → G

x 7→ x−1

are continuous.

Consider the map ta : G → G; x 7→ ax. This map is clearly a homeomorphism with

inverse x 7→ g−1x. So, we can just talk about the neighbourhood of identity, since we

can talk about neighbourhood of other points by translation.

Lemma 88. Let G be a topological group. Then,

1. Every neighbourhood U of identity contains a neighbourhood V of identity such that
VV ⊆ U.

2. Every neighbourhood U of identity contains a symmetric neighbourhood V of identity.

3. If H is a subgroup of G, so is its closure.

4. Every open subgroup of G is also closed.

5. If K1, K2 are compact subsets of G, then so is K1K2.

Theorem 89. Let G be a topological group. Then,
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1. G is T1.

2. G is Hausdorff.

3. The identity e is closed in G.

4. Every point of G is closed.

It is natural to ask about quotient topological groups. If H is a subgroup of G. Then

the set of cosets G/H is given the quotient topology which is defined as the coarsest

topology such that the projection map π : G → G/H is continuous. We will record

important properties about quotient topology in the following

Proposition 90. If G is a topological group and H is a subgroup. Then,

1. The quotient space G/H is homogeneous under G.

2. The canonical projection π : G → G/H is an open map.

3. The quotient space G/H is T1 if and only if H is closed.

4. The quotient space G/H is open if and only if H is open. Moreover, if G is compact, then
H is open if and only if G/H is finite.

5. If H is normal in G, then G/H is a topological group with respect to the quotient operation
and quotient topology.

6. Let H be the closure of {e} in G. Then H is normal in G, and the quotient group G/H is
Hausdorff with respect to the quotient topology.

Proposition 91. Let G be a Hausdorff topological group. Then the following hold:

1. The product of a closed subset F and a compact subset K is closed.

2. If H is a compact subgroup of G, then π : G → G/H is a closed map.

We will mostly concern ourselves locally compact spaces i.e. where every point has

a compact neighbourhood.

Proposition 92. Let G be a Hausdorff topological space. Then a subgroup H of G is locally
compact (in the subspace topology) is moreover closed. In particular, every discrete subgroup of
G is closed.
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Next, we will concern ourselves with the construction of Haar measure on locally

compact groups. Let us recall some measure theory.

For a set X, a collection of subsets F is called σ-algebra if it has the following prop-

erties:

1. X ∈ F

2. If U ∈ F , then so is Uc ∈ F .

3. If Un ∈ F , n ≥ 1, and let A =
∞⋃

n=1

An. Then, A ∈ F .

A set X with a σ-algebra of subsets F is called a measurable space. If X is a topolog-

ical space, we can consider the smallest σ-algebra B containing all the open sets of X.

The elements of B are called the Borel subsets of X.

A positive measure µ on an arbitrary measurable space (X,F ) is a function µ : F →
R+ ∪ {∞} that is countably additive, that is

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An)

for any family {An} of disjoint sets in F . A positive measure defined on the Borel sets

of a locally compact Hausdorff space X is called a Borel measure.

For a Borel measure µ, we say a Borel set M is outer regular if

µ(E) = inf{µ(U) : U ⊇ E, U open }

We say a Borel set M if

µ(E) = {µ(K) : K ⊆ E, K compact }

Definition 93. A Radon measure on X is a Borel measure that is finite on compact sets, outer
regular on all Borel sets, and inner regular on all open sets.

To define a Haar measure, we need to introduce another term. Let G be a group and µ

a Borel measure on G. We say that µ is (left) translation invariant if for all Borel subsets
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E of G we have

µ(gE) = µ(E)

for all g ∈ G.

Definition 94. Let G be a locally compact topological group. Then, the left (right) Haar measure
on G is a left (right)-invariant non-zero Radon measure.

Theorem 95. Let G be a locally compact group. Then, G admits a left Haar measure. Moreover,
this measure is unique upto a positive scalar.

We will now show that the existence of left Haar measure is equivalent to the exis-

tence of a right Haar measure.

Proposition 96. Let G be a locally compact group with non-zero Radon measure µ. Define

C+
c = { f ∈ Cc : f (h) > 0∀h ∈ G, || f ||u > 0}

where | · |u is the uniform or sup-norm. Then,

1. The measure µ is a left Haar measure if and only if the measure µ1(E) = µ(E−1) is a
right Haar measure on G.

2. The measure µ is a left Haar measure on G if and only if∫
G

Lh f dµ =
∫

G
f dµ

for all h ∈ G and f ∈ Cc(G)+. Here, Lh f (g) = f (h−1g).

3. If µ is a left Haar measure on G, then µ is positive on all non-empty open subsets of G

and ∫
G

f dµ > 0

for all f ∈ C+
c

4. If µ is a left Haar measure on G, then µ(G) is finite if and only if G is compact.
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This chapter follows [RV99] chapter 2 and [Fol16] chapter 4.

Suppose G is an abelian topological group written multiplicatively. Define Ĝ, the

multiplicative group of continuous characters χ : G → S1
of G. Ĝ is called a Pontryagin

dual of G. We will make this into a topological group by giving the space Ĝ the compact-

open topology as follows: suppose K is a compact subset of G, and V a neighbourhood

of identity in S1
. We then define the basis for open neighbourhoods of the identity

character in Ĝ as the sets

W(K, V) = {χ ∈ Ĝ : χ(K) ⊆ U}

Clearly, this defines a topology on Ĝ and for discrete topology, it coincides with point-

wise convergence.

Let us define some important subsets that will come handy in the analysis. Consider

the map

φ : R → S1; x 7→ e2πix

which is a continuous homomorphism with kernel Z. If ϵ ∈ (0, 1], then define N(ϵ) ⊆
S1

to be N(ϵ) := φ((−ϵ/3, ϵ/3)).

The main theorem in the analysis of abelian topological groups and its character

group is:

Theorem 97. Let G be an abelian topological group. Then,

1. A group homomorphism χ : G → S1 is continuous, and hence a character of G, if and
only if χ−1(N(1)) is an open neighbourhood of identity in G.

2. The family {W(K, N(1))}K is a neighbourhood base of the trivial character of Ĝ in the
compact open topology.

3. If G is discrete, then Ĝ is compact.
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4. If G is compact, then Ĝ is discrete.

5. If G is locally compact, then Ĝ is locally compact as well.

Let us now go on to define the Fourier transforms. Let G be a locally compact abelian

group. Then, G is equipped with a left and right Haar measure dµ.

Definition 98. Let f ∈ L1(G). Then, we can define the Fourier transform of f by

f̂ (χ) :==
∫

G
f (y)χ(y)dµ

for χ ∈ Ĝ.

Theorem 99 (Fourier transform formula). There exists a Haar measure dχ on Ĝ such that
for all f ∈ L+

1 (G) (continuous functions of positive type), we have

f (x) =
∫

Ĝ
f̂ (χ)χ(y)dχ

Remark 100. The measure dχ is called the dual measure of dµ. It is not clear why such a
measure should exist. The proof of existence is given in

Theorem 101 (Pontryagin Duality). The map α : G 7→ ̂̂G; g 7→ (χ 7→ χ(g)) is an isomor-
phism of topological groups.
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C. Algebraic Number Theory

This chapter follows [Mar18] [Lan94]

C.1. Norm and Trace, Discriminant

A complex number α ∈ C is said to be an algebraic integer if it is a root of a monic

polynomial with coefficients in Z. We want to say that the set of all algebraic integers

in C form a ring. For this, we use the following

Lemma 102. Let α ∈ C. The following are equivalent.

1. α is an algebraic integer;

2. The additive group of the ring Z[α] is finitely generated;

3. α is a member of some subring of C having a finitely generated additive group;

4. αA ⊆ A for some finitely generated additive subgroup A ⊆ C

As a corollary of this lemma, we can conclude that if α, β are algebraic integers, then

so are α + β and αβ. Indeed, since Z[α], Z[β] have finitely generated additive groups

then so does Z[α, β] (just multiply the generators of the two groups). But Z[α, β] con-

tain α + β and αβ so by the third characterisation, they are algebraic integers. Hence,

the set of algebraic integers in C forms a subring, denoted by say A.

If K/Q is a finite extension (such fields are called number fields) of degree n. Then,

there are exactly n embeddings of K into C. Moreover, if L/K are two number fields,

then we know that each embedding of K in C extends to exactly [L : K] embeddings

of L into C. In particular, there are exactly [L : K] embeddings of L into C that fix K

pointwise.

Let K be a number field. We will define two maps on K.
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Definition 103. Let [K : Q] = n and σ1, σ2, . . . , σn be the embeddings of K into C. Then, we
have two map:

1. Trace map: For α ∈ K, Tr(α) = σ1(α) + · · ·+ σn(α).

2. Norm map: For α ∈ K, N(α) = σ1(α) · · · σn(α)

Clearly, Tr map is additive and N map is multiplicative. Moreover, we can show that

Tr(α), N(α) ∈ Q for all α ∈ K, and in fact, if α is an algebraic integer, then Tr(α) and

N(α) are integers.

If L/K are number fields and σ1, σ2, . . . , σn be the embeddings of L into C that fix K

pointwise. Then, we can define the relative trace TrL/K and NL/K are follows:

TrL/K(α) = σ1(α) + · · ·+ σn(α)

NL/K(α) = σ1(α) · · · σn(α)

Like before, the relative trace is additive and relative norm map is multiplicative. More-

over, we can show that TrL/K(α), NL/K(α) ∈ K for all α ∈ L, and in fact, if α is an alge-

braic integer in L, then Tr(α) and N(α) are algebraic integers in K.

We also have the important "tower law"

Theorem 104. Let K, L, M be number fields such that K ⊆ L ⊆ M. Then, for all α ∈ M we
have

TrM/K(α) = TrL/K(TrM/L(α)), NM/K(α) = NL/K(NM/L(α))

Definition 105. Again, let [K : Q] = n and σ1, σ2, . . . , σn be the embeddings of K into C.
Then, we define the discriminant by

disc(α1, . . . , αn) = det(σi(αj))
2

for α1, . . . , αn ∈ K.

Theorem 106.
disc(α1, . . . , αn) = |Tr(αiαj)|

As a corollary, disc(α1, . . . , αn) ∈ Q and if the αis are algebraic integers, then the

discriminant is a rational integer (Z).
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C.2. Dedekind Domains and Different ideal

Definition 107. An integral domain R is said to be a Dedekind Domain if:

1. R is integrally closed in its field of fractions.

2. R is Noetherian.

3. Every non-zero prime ideal is also maximal.

Note that "integrally closed in its field of fractions" means: if α/β ∈ Frac(R) is a root

of a monic polynomial with coefficients in R, then α/β ∈ R. The key thing to note is

that

Theorem 108. If K is a number field, then OK := A ∩ K is a Dedekind Domain.

From here on, unless specified, R is a Dedekind Domain.

Theorem 109. If a is an ideal of R, then there is an ideal b of R such that ab is principal.

Corollary 110. 1. If a, b, c are ideals in R, then ac = bc implies a = b.

2. In a Dedekind Domain R, a | b ⇔ a ⊇ b for ideals a, b

Using these results, we can prove that

Theorem 111. In a Dedekind Domain R, every ideal of R can be represented as a unique product
of prime ideals of R.

Corollary 112. If K is a number field, then the ideals of OK can be factored uniquely into a
product of prime ideals.

For the discussion to follow, consider the following setup: L/K is an extension of

number fields. Let OL,OK be the ring of algebraic integers of L, K respectively. Capital

gothic characters P will denote the prime ideals in OL and small gothic characters p the

prime ideals in OK.

Theorem 113. The following are equivalent:

1. P | pOL;

2. P ⊇ pOL;

3. P ⊇ p;
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4. P∩OK = p;

5. P∩ K = p

When the above equivalent conditions are satisfied, we say P lies above p and p lies

below P. In fact,

Theorem 114. Every prime ideal P of OL lies above a unique prime ideal p of OK and every
prime ideal p of OK lies below atleast one prime ideal P of OL.

Note that pOL is an ideal of OL and due to the theorem which says that every ideal

of a Dedekind Domain can be written uniquely as a product of prime ideals, we have

pOL = Pe1
1 · · ·Per

r

The exponent ei is called the ramification index and if P is a prime ideal lying above p,

we denote the ramification index of P over p by e(P/p).

Note that every prime ideal is also a maximal ideal in Dedekind Domain (by defi-

nition). Therefore, OL/P is a field and so is OK/p. These are called the residue fields

associated to the prime ideals P, p. If suppose P | p, then OL/P is a field extension of

OK/p (we can show that the fields are finite fields). So, we can talk of degree of this

extension, denoted by f (P/p) called the inertial degree.

Theorem 115. Let L/K be an extension of number fields of degree n, fix a prime ideal p of OK.
We have the following formula

∑
P|p

e(P/p) f (P/p) = n

A prime P lying above p is said to ramify if e(P/p) > 1. A natural question to ask

is which primes are ramified and this question is answered using the different ideal

which we will define now. Following that, we will see some criterions that characterise

ramification and also see relation between discriminant and different ideal.

Definition 116. Let L/K be extension of number fields, then the relative discriminant d is
defined as the inverse of O∨

L where

O∨
L := {α ∈ L : TrL/K(αβ) ∈ OK ∀ β ∈ OL}
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Therefore,
dL/K := (O∨

L )
−1 = {α ∈ L : αO∨

L ⊆ OL}

When K = Q, dL/Q is called the absolute different and this will be important. From

now, if we write dK, it means absolute different.

If a is an ideal of OK, then we define the ideal-norm of a by the index [OK : a], and it

is denoted by ||a||.

Theorem 117. Let L/K be an extension of number fields of degree n.

1. For ideals a, b in OK, we have

||ab|| = ||a|| · ||b||

2. Let a be an ideal in OK, then
||aOL|| = ||a||n

3. For 0 ̸= α ∈ OK, we have
||⟨α⟩|| = |NK/Q(α)|

Corollary 118. If K is a number field, then the norm of the different ideal dK is exactly the
absolute discriminant |disc(K)|.

Theorem 119. The prime ideals in the different ideal dK are exactly the ones that are ramified
over Q. More explicitly, for each prime ideal p of OK lying over the prime p of Q, with ram-
ification index e = e(p/p), the exact power of p in dK is e − 1 if e ̸≡ 0 mod 4 and pe | dK

otherwise.

Corollary 120. The prime factors of disc(K) are precisely the ones in Q that are ramified in K.

For more details and proof of the facts about the different ideal, please refer to [Lan94]

C.3. Global and Local fields

This section follows [Cas+76][Neu99].

A global field is a finite extension of Q or Fq(t) where q is a prime power. We have

already discussed global fields which are number fields. For the function field case,
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please refer to [Sti09]. Local fields will arise naturally as completions of global fields.

We say a local field is a field K with a non-trivial metric such that the topology induced

by the metric is locally compact. If the metric satisfies strong triangle inequality, then

we say the local field is non-Archimedean and Archimedean otherwise. Now, let us

look at a few characterisations of local fields.

Lemma 121. Let K be a field with non-trivial absolute value. K is a local field if and only if
every closed ball is compact.

Corollary 122. Every local field has to be complete.

Proposition 123. Let K be a field with a non-trivial absolute value induced by a non-trivial
discrete valuation. If A is the valuation ring, and ϖ is the uniformiser, then K is a local field if
and only if K is complete and the residue field A/ϖA is finite.

Corollary 124. If K is a global field with a non-trivial absolute value | · |v, then the completion
Kv of K with respect to the absolute value | · |v is a local field.

Theorem 125. Let K be a global field.

1. If K is Archimedean, then it is isomorphic to R or C.

2. If K is non-Archimedean, then it is isomorphic to a finite extension of Qp or Fq(t).

Finally,

Theorem 126. A local field K satisfies one of the following equivalent conditions:

1. K is R or C or the fraction field of a Discrete Valuation Ring with finite residue field.

2. K is isomorphic to a finite extension of Qp or Fq(t).

3. K is a non-discrete topological field.

Proof. 1, 2 has been discussed. Proving 3 satisfies one of the other two can be found in

[RV99]

Two important theorems for us will be

Theorem 127 (Ostrowski’s theorem). [Con] Let K be a global field. Then,

1. Suppose K = Q. Then every non-trivial absolute value on K is represented by either the
normal absolute value, denoted by | · |∞ or a p-adic absolute value, denoted by | · |p.
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2. Suppose K = Fq(t). Then, every non-trivial absolute value on K is represented by either
the absolute value at ∞, denoted by | · |∞: defined as

| f /g|∞ = qdeg f−deg g

or by the finite places | · |p corresponding to an irreducible polynomial p(t) ∈ Fq[t].

Theorem 128 (Product formula). Let x ∈ K×. Then,

∏
v
|x|v = 1

Proof. This can be broken into two steps:

1. First suppose K = Q or Fq(t). I will prove the case of Q, the function field case

follows similarly. Say x ∈ Q is a natural number. Then, by fundamental theorem

of arithmetic, x = pe1
1 · · · per

r with ei > 0. Clearly, |x|pj = p−ej ; j = 1, 2, . . . , r. And,

|x|∞ = pe1
1 · · · per

r . Therefore, the product

∏
p:p prime

|x|p × |x|∞ = p−e1
1 · · · p−er

r p1e
1
· · · per

r = 1

Similarly, if x ∈ Q, then

x =
pe1

1 · · · per
r

q f1
1 · · · q fs

s

Clearly, |x|pi = p−ei
i , |x|qj = q

f j
j , and |x|∞ = pe1

1 · · · per
r q− f1

1 · · · q− fs
s Therefore,

∏
p:p prime

|x|p × |x|∞ = p−e1
1 · · · p−er

r q f1
1 · · · q fs

s pe1
1 · · · per

r q− f1
1 · · · q− fs

s = 1

This completes the proof.

2. Note that for v|p, we have an extension of fields Kv/Qp. Then, for x ∈ Kv we have

|x|Kv = |NK/Q(x)|Qp

Therefore, for all x ∈ K×
we have

|x| = ∏
p∈{p:p prime }∪{∞}

∏
v|p

|x|v = ∏
p∈{p:p prime }∪{∞}

∏
v|p

|NKv/Qp(x)|v
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Moreover, we know that

K ⊗Q Qp ≃ ∏
v|p

Kv

so

NL/K(x) = ∏
v|p

NKv/Qp(x)

Hence, we conclude our product formula from the result for K = Q.

C.4. Restricted product topology

This section follows [Sut]

We have a canonical inclusion

Z ↪→ Ẑ := lim−→Z/nZ = ∏
p

Zp

Since Zp is compact, ∏p Zp is also compact by Tychonoff theorem. But, ∏p Qp is not

locally compact even if Qp is locally compact for all p. This fact is encapsulated in the

following proposition.

Proposition 129. Given a family {Xi}i∈I of locally compact topological spaces, the product
∏i∈I Xi is locally compact if and only if Xi are compact for all but finitely many i.

To rectify this situation, we will take support of a different topology which we define

next.

Definition 130. Let {Xi}i∈I be a family of topological spaces indexed by I and suppose Ui ⊆ Xi

are open sets. Then,

∏⨿(Xi, Ui) = {x = (xi) | xi ∈ Ui for almost all i ∈ I}

is defined to be the restricted product topology. The basis for this topology is

B =

{
∏
i∈I

Vi such that Vi = Ui for almost all i ∈ I

}
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For each j ∈ I, we have a projection map

πj : ∏⨿(Xi, Ui) → Xj

such that (xi) 7→ xj. The map πj is continuous since for any open set Wj ⊆ Xj open,

π−1
j (Wj) is the union of all basic open sets ∏ Vi ∈ B with Vj = Wj and thus open.

Remark 131. 1. As sets, we always have

∏ Ui ⊆ ∏⨿(Xi, Ui) ⊆ ∏ Xi

but in general the restricted product topology is not the same as the subspace topology as
inherited from ∏ Xi. For ∏ Ui is open in the restricted product topology but it is not open
in the subspace topology because it does not contain the intersection of ∏⨿(Xi, Ui) with
any basic open set of ∏ Xi.

2. The restricted product topology does not depend on the choice of Ui. Indeed,

∏⨿(Xi, Ui) = ∏⨿(Xi, U′
i )

whenever Ui = U′
i for almost all i. Notice that the two are identical not only as sets but

also as topological spaces. Thus, it is enough to specify Ui for all but finitely many i ∈ I.

For x ∈ X := ∏⨿(Xi, Ui), look at the set (maybe empty)

S(x) = {i ∈ I : xi ̸∈ Ui}

For a finite set S ⊆ I, we define

XS = {x ∈ X : S(x) ⊆ S} = ∏
i ̸∈S

Ui × ∏
i∈S

Xi

We observe that XS ∈ B is an open set. We can view XS as a topological space in two

ways. Both as a subspace of X and as a product of certain Xi and Ui. If we restrict B to

a basis of the subspace XS, we get

BS =
{
∏ Vi : Vi ⊆ πi(XS) and Vi = Ui = πi(XS) for almost all i

}
This is the standard basis for the product topology, thus the two topologies on XS are
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identical.

Notice that if S ⊆ T, then XS ⊆ XT. This gives a partial order on the finite subsets S ⊆ I

by inclusion. The system of topological spaces {XS : S ⊆finite I} with the inclusion

maps {ιSTXS → XT : S ⊆ T} forms a direct system. Thus, we get a direct limit

lim−→ XS := ⨿ XS/ ∼

which is the quotient of the coproduct space modulo the equivalence relation S ∋ x ∼
ιST(x).

Proposition 132. Let {Xi} be a family of topological spaces indexed by i ∈ I, {Ui} be a family
of open sets Ui ⊆ Xi, and let X := ∏⨿(Xi, Ui) be the corresponding restricted product topology.
Let S ⊆finite I and XS be as defined before. There is a canonical homeomorphism of topological
spaces

φ : X → lim−→ XS

Proposition 133. Let {Xi}i∈I be a family of locally compact topological spaces and let Ui ⊆ Xi

be a family of open subsets of which all but finitely many are compact. Then the restricted direct
product topology X := ∏⨿(Xi, Ui) is locally compact.

Proof. Fix a finite set S ⊆ I and note that the topological space

XS = ∏
i∈S

Xi × ∏
i ̸∈S

Ui

This is locally compact since the product of Ui’s are compact by Tychonoff’s theorem,

finite product of locally compact spaces is locally compact and product of locally com-

pact and compact is locally compact. Since XS cover X, the claim follows. For if x ∈ X

then x ∈ XS for some finite set S ⊆ I, but XS is locally compact and therefore there is a

compact neighbourhood XS ⊇ C ∋ x which is also compact in X.

C.5. Adéles

Let K be a global field (finite extension of Q or Fq(t)). Let MK denote the set of places of

K (equivalence class of valuations). For any v ∈ MK, by Kv we denote the completion

of K at the place v, and Ov denotes the ring of integers of the local field Kv. It is easy to

see that Ov is compact (closed ball in a metric space).
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Definition 134. The adele ring of K is the restricted product topology of Kv with respect to the
open sets Ov. More explicitly,

AK = {(xv) ∈ ∏
v∈MK

Kv : xv ∈ Ov for all but finitely many v}

Fix a finite set of places S ⊆ MK. Then the ring of S-adeles is defined to be

AK,S := ∏
v∈S

Kv × ∏
v ̸∈S

Ov

By 132 we have AK ≃ lim−→AK,S and therefore AK is a topological ring. We can embed

K ↪→ Kv. Such embeddings allow us to embed K ↪→ AK by x 7→ (x, x, x, x, . . .). The

image of K in AK forms a subring called the principal adeles.

Proposition 135. The adele ring AK of a global field is locally compact and Hausdorff.

Proof. AK is locally compact due to 133. If x ̸= y ∈ AK, then there exists v ∈ MK such

that xv ̸= yv. But Kv is Hausdorff, hence there are disjoint open sets Uv ∋ xv, Vv ∋ yv.

Then U = ∏v′ ̸=v Ov × Uv′ , V = ∏v′ ̸=v Ov′ × Vv are disjoint open neighbourhoods of x

and y proving AK is Hausdorff.

Theorem 136 (Approximation theorem). For every global field K,

1. AK = K + AK,S∞

2. K ∩ AK,S∞ = OK

Proof. We want to show for x ∈ AK there exists µ ∈ K such that each component

xv − µ ∈ Ov. Our proof is in the case of number fields but essentially the same proof

goes through in the case of function fields.

Let p be a prime ideal of OK and suppose p is the rational prime lying below it. For each

v ∈ MK, there is an integers mv such that pmv
v xv ∈ Ov. There are only finitely many v

such that xv ̸∈ Ov, let that set be {p1, . . . , pr}. Then, we can find an integer m such that

mx has all local components integral, i.e. mxv ∈ Ov for all v ∈ MK. Let n1, n2, . . . , nr be

a sequence in N and consider the equations

λ ≡ mxj (mod p
nj
j )

where xj is the component of x corresponding to pj. Such a λ ∈ OK exists due to Chinese

Remainder Theorem. Let µ = λ/m. If njs are chosen such that it is atleast the number

67



C. Algebraic Number Theory

of times pj occurs in the factorisation of langlem⟩ in OK, then

xj − µ =
mxj − λ

m
∈

p
nj
j

m

By our choice of nj we see that xj − µ is integral for all pj. At the other places, it is clear

that mxv − λ ∈ Ov. This implies

xv − µ =
mxv − λ

m
∈ 1

m
Ov = Ov

And, note that OK =
⋂

v∈MK\S∞ Ov. Hence, K ∩ AK,S∞ = OK. This completes the

proof.

C.6. Idéles

Definition 137. Let K be a global field. Then the idele group of K is the topological group IK is
the restricted product topology of K×

v with respect to O×
v . Explicitly,

IK = {(xv) ∈ ∏
v∈MK

K×
v : xv ∈ O×

v for all but finitely many v}

This is a group with multiplication being componentwise. The canonical embedding

K ↪→ AK restricts to a canonical embedding K× ↪→ IK.

Consider the homomorphism

ι : IK → JK

(xv) 7→ ∏
p

pvp(xp)

This is a surjective homomorphism and the ideal is called the ideal associated to the

idele.

Proposition 138. Let K be a global field. the idele group IK is a locally compact group.

Proof. IK is Hausdorff since the topology is finer than the subspace topology of A×
K ⊆

AK which is Hausdorff as seen in previous section. The set O×
v is compact since it is a

closed subspace of a compact set O. This is true for all v finite and hence Ov is compact
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for all but finitely many v. Hence, the restricted product topology is locally compact

from 132.

Theorem 139 (Product formula). For all x ∈ IK, we have

∏
v
|x|v = 1

Proof. I will prove the result for number fields. We can easily adjust for function fields.

K/Q is a finite separable extension. If p is a place of Q, then we have the isomorphism

K ⊗Q Qp ≃ ∏
v|p

Kv

We therefore have

NK/Q(x) = NK⊗Qp/Qp(x) = ∏
v|p

NKv/Qp(x)

If we now consider the normalised absolute value on both sides, we have

|NK/Q(x)|p = ∏
v|p

|NKv/Qp(x)|p = ∏
v|p

|x|v

If we now take the product over all valuations of Q, we have

∏
p
|NK/Q(x)|p = ∏

p
∏
v|p

|NKv/Qp(x)|p = ∏
v∈MK

|x|v

The left most product is 1 by the product formula on Q. This completes the proof.
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