
MASTERS THESIS

Irish Debbarma

Guide: Professor Mahesh Kakde

The Gross-Stark Conjecture

Department of Mathematics

Indian Institute of Science, Bangalore

April, 2024



Contents

Acknowledgements i

Preface ii

Notation v

Chapter 1. Introduction 1

1. Dirichlet’s analytic class number formula 1

2. Artin L-functions 3

3. Stark’s regulator 6

4. Stark’s principal conjecture 8

5. Reduction to the abelian case and independence of S 10

6. Statement of Gross-Stark Conjecture 12

Chapter 2. Cohomological interpretation of the conjecture 16

1. Rank-1 specific formulation 18

2. Cohomological interpretation 19

3. Local Cohomology groups 19

4. Global Cohomology groups 21

5. L-invariant and proof strategy 24

6. Formula for L invariant in rank-1 and proof strategy 26

Chapter 3. Construction of cusp form 28

1. Hilbert Modular Forms 28

2. Eisenstein series 29

3. Construction of cusp form in r = 1 30

4. General rank, i.e. r ≥ 1 32

Chapter 4. Hida Families and Hecke Algebras 34

1. Λ-adic Eisenstein series 34

2. Λ-adic cusp form 36

Chapter 5. Hida Algebra Homomorphism 39

1. 1+ ϵ specialisation 39

2. General rank, case 1: R ′ ̸= ∅ 40

3. General rank, case 2 : R ′ = ∅, ν1(W) = 0 44



CONTENTS

4. General rank, case 3 : R ′ = ∅, ν1(W) ̸= 0 47

Chapter 6. Construction of cohomology class 49

1. Galois Representations attached to Hida families 49

2. Local behaviour of the cohomology class 52

Chapter 7. Gross-Stark regulator computation 54

1. The homomorphism ϕm 54

2. Proof of Lan(χ) = Rp(χ) for Cases 1, 2 and 3 56

3. Proof of Lan(χ−1) = Rp(χ
−1) for Case 3 58

Appendix A. Dedekind Zeta Function 60

Appendix B. Abelian L-functions 61

Appendix C. Linear representations of finite groups 64

Appendix D. Definition and properties of Artin L-functions 66

Appendix E. A theorem of Brauer and Artin’s conjecture 68

Appendix F. Functional equation 69

Appendix. Bibliography 72



Acknowledgements

My sincere thanks to Professor Mahesh Kakde for suggesting the topic, and

constantly guiding me through this project. His insights and helpful comments

enriched the experience and I got to learn a lot.

A special thank you to Dr. Rishabh Agnihotri for being a wonderful friend and

allowing me to borrow books from his personal library. I am grateful for his kindness

and the discussions we have had.

I also thank my dear friends Moo, Yukta, and Upamanyu for being my support

system and listening to my rants.

i



Preface

For a number field K, let ζK(s) denote the Dedekind zeta function, a priori defined

only for Re(s) > 1 by the Euler product∏
p:finite places

(
1−

1

Nps

)−1

We can analytically continue this function to the entire complex plane and obtain a

functional equation as well. Dirichlet was able to show that there is a pole of ζK(s)

at s = 1 and infact the residue at s = 1 is of utmost importance. He showed that

Ress=1 ζK(s) =
2r1(2π)r2√

|d|

hR

e

where r1 is the number of real embeddings, r2 the number of complex embeddings,

d is the absolute discriminant, R is the regulator, h is the class number, e is the

number of roots of unity contained in K. This is one of the many instances where the

special value of a L-function is related to an arithmetic invariant of the underlying

algebraic object.

Artin introduced L-functions L(χ, s) attached to any complex representation χ :

Gal(K/K) → Q×
of the absolute Galois group of number fields. In a series of

papers starting in [Sta71], Stark studied the special values of these L-functions and

conjectured that

Ress=0
L(χ, s)

srχ
= R(χ)A(χ)

where rχ is given, R(χ) is the generalised regulator and A(χ) is some arithmetic

constant. Stark’s conjecture was refined and reformulated by Tate in [Tat84]. Soon

after, Deligne-Ribet [DR80], Cassou-Nogues[Cas79], Barsky[Bar78] were able to con-

struct p-adic L-functions which interpolate to special values of these L-functions.

Gross conjectured a similar formula for the leading term of the p-dic L-functions

Ress=0
Lp(ωχ, s)

sr
= Rp(χ)A(χ)

where Rp is the p-adic regulator. This conjecture is known as the Gross-Stark

conjecture. Gross proved the K = Q case and using the methods developed in

ii



PREFACE iii

[Wil88][Wil90], Dasgupta-Darmon-Pollack [DDP11] were able to prove the conjec-

ture for the rank one case under the additional hypothesis that Leopoldt’s con-

jecture holds. The assumption on Leopoldt’s conjecture was removed by Ventullo

in [Ven15][Ven14] and the Gross-Stark conjecture was proved in full generality by

Dasgupta-Kakde-Ventullo in [DKV18]. My masters thesis is to understand the proof

of the Gross-Stark conjecture in the two seminal papers.

The chapter 1 introduces us to the general Stark conjectures as contained in

[Tat84]. We first translate and fill gaps in the chapters presented in Tate’s book and

then introduce the p-adic versions of Stark’s conjectures as presented by Gross in

[Gro81].

The cohomological interpretation of the Gross-Stark conjecture is contained in

chapter 2. In the rank one case the cohomological point of view reduces the con-

jecture to finding a cohomology class of the appropriate type. But, the question

remains very tricky in the general rank case as is explained towards the end of

this chapter. We mostly follow [DDP11] for this section and also use [DKV18] for

notation and few results on the orthogonality of units.

The construction of the cusp form is dealt with in chapter 3 . Firstly, we create

a nice potential semi-cusp form and then act on it with some nice enough Hecke

operators that transform it into a true cusp-form. Here, we also deal with the

subtleties of constructing such semi-cusp form in the general rank case, where we

do not have a very explicit description of the semi-cusp form as the rank one case.

The construction relies crucially on some geometric inputs that is done in [Ven14],

[Ven15] but is beyond the scope of this thesis. We will take Ventullo’s findings at

faith and proceed.

In chapter 4, the p-adic interpolation of the cusp forms constructed in chapter 3

is performed.

The technical heart of the paper is chapter 5 containing crucial computations that

allow us to obtain the essential Hida Algebra homomorphisms which will later be

used to construct the cohomology class needed to compute the Gross-Stark regulator.

The construction of the cohomology class using the methods initiated in Wiles

papers [Wil86][Wil88][Wil90] (which are in turn inspired by [Rib90]) is executed

in chapter 6. We will also see the interplay between the local and global bases

which play an important role in determining the shape of the representation. This

gives an explicit description of the cohomology class which allows us to compute the

Gross-Stark regulator in the later chapter.

The final chapter 7 is where we assimilate all the information from the previous

chapters and actually compute the Gross-Stark regulator using the cohomology class

constructed in the previous chapter.
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We try to stay as original as possible and only try to exposit the work done

in [DDP11], [DKV18], [Ven15],[Ven14]. We have skipped proofs where we felt the

details are sufficient (or in places where we thought it would be a tragedy to rewrite

things that has already been written beautifully and probably more clearly than we

could).



Notation

Let k be a global field, i.e. a finite extension of Q or Fq(t). The places or

equivalence classes of absolute values of k is denoted by v, v ′, . . .. If Q ⊆ k, we use

p, q, . . . to denote the finite places of k to distinguish it from other ideals of the ring

of integers of k (denoted by other fractal letters). Given a finite extension K/k, by

w,w ′, . . . we denote the places of K that extend v, v ′, . . .. We use capital gothic

letters P,Q to denote the places of K that divide p, q.

The complete local fields are denoted by kv, Kw, kp, KP; the ring of integers by

Ov,Ow,Op,OP. If w is a place of K extending v, the degree of extension [Kw : kv] is

denoted by [w : v].

If S is a finite set of places of k containing all the Archimedean places of k, we

can define the ring of S-integers

OS := {x ∈ k : x ∈ Op ∀ p ̸∈ S} =
⋂
p̸∈S

Op

to be the Dedekind domain obtained by inverting all the primes of k contained

in S.

We simply write ||v, ||w, ||p, ||P, . . . for the normalised absolute values attached to

the places indicated in the subscript. If x ∈ k×, we have µ(xU) = |x|vµ(U) for

all compact sets U in the interior of kv and all choices of Haar measure µ on the

additive group kv. More explicitly, the absolute values are

|x|v =


usual absolute value if kv ≃ R

sqaure of usual absolute value if kv ≃ C

Nv−1 if kv is non-Archimedean

For x ∈ Z×
p , we have the factorisation

Z×
p = (Z/2pZ)× × (1+ 2pZp)

= ω(x)⟨x⟩

with ω and ⟨·⟩ defined by the decomposition above.

⟨·⟩ will also be used to denote the ideal generated by ·. The two usage shall be

clear from context.

v



CHAPTER 1

Introduction

This chapter (more specifically §§1.1-1.5) follows [Tat84, §1 , §§0-4 ] closely.

I have provided proof of statements that the book chooses to leave. I claim no

originality in the presentation. This chapter(§§1.1-1.5) is mostly a translation of the

chapter in loc. cit.

1. Dirichlet’s analytic class number formula

Suppose k is a number field (finite extension of Q), and ζk(s) is the Dedekind

zeta function of k, defined for Re(s) > 1 by the Euler product

(1) ζk(s) :=
∏
p

(
1−

1

Nps

)−1

where the product is over all the prime ideals of k. A famous theorem of Dedekind

[Theorem 40 Mar18, p. 123], a generalisation of a theorem of Dirichlet, states that

Theorem 1. ζk(s) has a simple pole at s = 1, and the residue at s = 1 is

(2)
2r1(2π)r2√

|d|

hR

e

where r1 (resp. r2) is the number of real (resp. complex) embeddings of K, d the

discriminant of k, h the class number of k, and e the number of roots of unity

contained in k.

The functional equation of ζk(s) (appendix F) allows us to rewrite this theorem

into a statement of the behaviour of ζk(s) around the point s = 0.

Proposition 2. The Taylor expansion of ζk(s) around s = 0 is given by

(3) ζk(s) = −
hR

e
sr1+r2−1 +O(sr1+r2)

Proof. If Λk(s) = 2
r2(1−s)|d|s/2π−ns/2Γ(s/2)r1Γ(s)r2ζK(s), then by the functional

equation we have

Λ(s) = Λ(1− s)

as W(χ) = 1 if χ is trivial. Thus, using Dirichlet’s analytic class number formula at

s = 1, and the fact that Γ(s) has a pole at s = 0 with residue 1, we have

sζK(s) ∼ −
hR

e
sr1+r2

1



1. DIRICHLET’S ANALYTIC CLASS NUMBER FORMULA 2

as s goes to 0. This completes the proof. □

The above proposition 2 gives us the first non-zero term in the Taylor series

expansion of ζk(s) around s = 0. Stark’s conjecture will state a similar result but

for Artin L-functions. Before proceeding further, we will state Dirichlet’s analytic

class number formula in a slightly general setting of S-units.

Let S be a finite set of places of k containing the Archimedean places S∞. For

Re(s) > 1, we can define the generalised zeta function

(4) ζk,S(s) =
∏
p̸∈S

(
1−

1

Nps

)−1

By Cl(Ok,S) we will denote the ideal class group of the S-integers, and hk,S will

denote the size of this class group.

Definition 3. O×
S is finitely generated abelian group and thus has a free-part and a

torsion part. By the S-unit theorem (cf. the next section) the rank of the free part

is r = |S| − 1. Let {u1, . . . , ur} be a set of fundamental units modulo the torsion

(O×
S )tors. The regulator RS is defined to be

(5) RS =

∣∣∣∣∣∣ det
1≤i≤r
v∈S\{v0}

(log |ui|v)

∣∣∣∣∣∣
where v0 is an arbitrarily chosen Archimedean prime in S.

Remark 4. A priori, it looks like the definition depends on the choice of the

Archimedean place v0, and the choice of basis {u1, . . . , ur}. But, the dependence

on v0 can be removed by the product formula. Let {ϵ1, . . . , ϵr} be another set of

fundamental units. Then, one can show that

RS({ui}) = RS({ϵi})[⟨ui⟩ : ⟨ϵi⟩]

where the index is just the determinant of the transformation matrix. For funda-

mental units, the determinant is 1 and thus RS does not depend on the choice of

fundamental units.

Lemma 5. Let p be a place of k not contained in S. Let T = S ∪ {p}. Let m be the

order of p in the ideal class group of S-integers OS. We can conclude that

(1) hS = mhT
(2) RT = m(logNp)RS
(3) ζk,T(s) ∼ (logNp)sζk,S(s) in the neighbourhood of s = 0

Proof. There is a natural map from I(OS) → I(OT) via a 7→ aOT . This map

is surjective (look at the prime factorisation). Now, combining with the standard
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projection map I(OT)→ C(OT) we have a surjective map C(OS)→ C(OT). To finish

the proof of first assertion, it is enough to show the following sequence is exact:

0 [p] C(OS) C(OT) 0

where [p] is the class of p in the ideal class group C(OS). We have already shown

the surjection. Let us prove the injectivity of the map [p]→ C(OS). Let a ∈ I(OS)

be in the kernel of the map C(OS) → C(OT), then there exists α ∈ k× such that

aOT = αOT . As S ⊆ T , we can conclude that vq(a) = vq(αOS) for all places q ̸= p.

Thus, a = peαOS with e = vp(a) − vp(α). As both sides are fractional ideals of OS

with same valuation at all places, this completes the proof of first assertion.

Let {u1, . . . , ur} be a set of fundamental units of O×
S /(OS)tors. If p

m = ϖOS, then

{u1, . . . , ur,ϖ} is a system of units for O×
T /(OT)tors. Indeed, if u ∈ O×

T , then after

scaling with appropriate power of ϖ we can assume that 0 ≤ vp(u) ≤ m− 1. Then,

uOS = pvp(u) as the valuations of both sides is equal for all places. But the order

of [p] in C(OS) is m and so vp(u) = 0 or equivalently, u ∈ O×
S . Back to the second

assertion. Note that vq(ϖ) = 0 for all q ̸= p and so the matrix MT corresponding

to the regulator RT has the form

MT =

[
MS ⋆

0 log |ϖ|p

]
Hence, RT = RS log |ϖ|p = RS ·m · logNp.

The third assertion follows from the observation

ζk,T(s) = (1− Np−s) ζk,S(s)

and taking limit as s→ 0. □

The following theorem follows immediately from the above lemma.

Theorem 6. In the neighbourhood of s = 0, we have

ζk,S(s) ∼ −
hSRS

e
s#S−1

2. Artin L-functions

Suppose K is now a finite Galois extension of k, with Galois group G. One has

χ : G→ C

a character of a representation G→ GL(V) with V a finite dimensional vector space

over C.
Fix a finite set of places of k, S, then one can simply write
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LS(s, χ) =
∏
p̸∈S

det(1− σPNp−s | V IP)−1

for the Artin L-function (relative to S) attached to χ. Here P denotes an arbitrary

place of K lying above p, and σP ∈ GP/IP is the Frobenius automorphism of the

extension of the residue fields P/p. The function L(s, χ) does not depend on the

choice of the prime P as all the Frobenius elements are conjugate to each other and

determinant is invariant under change of basis.

In a neighbourhood of s = 0 w must have

LS(s, χ) = c(χ)s
r(χ) +O(sr(χ)+1)

We are interested in finding c(χ) but first we will determine the multiplicity r(χ).

Let SK be the finite set of places of K lying above the places in S, the finite set of

places of k; and Y the free abelian group with basis SK. Let

X =

{∑
w∈SK

nww ∈ Y :
∑
w∈SK

nw = 0

}
The Galois group G acts naturally by permutation of the places w dividing v for

each v ∈ S. Thus we obtain a G-module structure on Y and on X. We have an exact

sequence of G-modules :

0 X Y Z 0

∑
nww

∑
nw

Definition 7 (Notation). For a Z-module B and a subring A of C, by AB we mean

the tensor product A ⊗Z B. Let χX be the character of the representation CX of G,

and similarly χY of CY.

Remark 8. Note that χX = χY − 1.

Evidently, χY =
⊕
v∈S

IndGGw
1Gw, where for each v ∈ S, w is a place of K dividing

v chosen arbitrarily. In particular, χY and χX take their values in Z.

Proposition 9. If χ is a character of a C[G]-module V (finite dimensional C vector

space), then

r(χ) =

(∑
v∈S

dimVGw

)
− dimVG = ⟨χ, χX⟩G = dimC HomG(V

∗,CX)(6)

where V∗ is the dual of V.
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Proof. We have a canonical homomorphism HomC(V
∗,CX) ≃ V∗∗ ⊗C CX ≃

V⊗CCX. Thus, HomG(V
∗,CX) ≃ (V⊗CCX)G. Using the othogonality of characters

one has dimC HomG(V
∗,CX) = ⟨χχX, 1⟩G = ⟨χ, χX⟩G. Moreover, χX = χX (χX only

takes integer values) and thus we have the last equality.

The second equality follows from Frobenius reciprocity in the following way:

⟨χ, χX⟩G = ⟨χ, χY⟩G − ⟨χ, 1⟩G

=
∑
v∈S

⟨χ, IndGGw
1Gw⟩G − ⟨χ, 1⟩G

=
∑
v∈S

⟨χ|Gw , 1Gw⟩Gw − dimC V
G

=
∑
v∈S

dimC V
Gw − dimC V

G

It remains to show the first equality. By Brauer-Nesbitt theorem,

χ =
∑
ψ

nψ Ind
G
Hψ

where ψ are 1 dimensional characters of subgroups H of G. Again, by Frobenius

reciprocity

⟨χ, χX⟩G =
∑

nψ⟨χ|H, ψ⟩H
Next, by properties of L-functions

r(χ) =
∑

nψr(ψ)

Comparing the two relations tell us that it is sufficient to study just the 1 dimen-

sional characters ψ.

If χ = 1G, then LS(s, χ) = ζk,S(s) and so using theorem 6 gives us

r(χ) = #S− 1 =

(∑
v∈S

dimVGw

)
− dimVG

If χ is a 1-dimensional character but not the trivial character, then VG = {0}. This

handles one summand. The other summand is a bit tricky. Recall the functional

equation of LS(s, χ)

(7) Λ(1− s, χ) =W(χ)Λ(s, χ)

with

(8) Λ(s, χ) = ΓR(s)
a1ΓR

(
s+ 1

2

)a2
L(s, χ)ΓC(s)

r2
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and

(9) a1 =
∑
v real

dimVGw , a2 =
∑
v real

codimVGw

It is a well known fact that L(s, χ) does not vanish at s = 1 and W(χ) is a non-

vanishing holomorphic function. So, if we compare order of vanishing on both sides

of the functional equation, we get

−a1 − r2 + rS∞ = 0⇔ rS∞ = a1 + r2 =
∑
v|∞ dimVGw

where the last equality comes from the fact that dimC V = 1 and r2 is the number

of complex embeddings of k in Q. As

LS(s, χ) =
∏

p∈S\S∞
χ(Ip)=1

(1− χ(p)Np−s)LS∞(s, χ)

As Gp is generated by Ip and a Frobenius σp, the order of vanishing of LS(s, χ) is

exactly

rS(χ) = #{p ∈ S\S∞ : χ(Gp) = 1}+ rS∞
=
∑

p∈S\S∞
dimVGp + rS∞

=
∑
p∈S

dimVGp

This completes the proof. □

We will record the observation made in the proof as it is very crucial for our

purposes.

Theorem 10. If χ is a 1-dimensional character of G, then

rS(χ) =

#S− 1 if χ = 1G

#{v ∈ S : χ(Gv) = 1} otherwise

3. Stark’s regulator

We will now introduce the type of regulator attached to χ which will figure in

the principal conjecture of Stark. Denote by

U = {x ∈ K× : |x|w = 1 ∀ w ̸∈ SK}

the group of SK-units of K, and consider the logarithmic embedding

λ : U −→ RX
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u 7→ ∑
w∈SK

log |u|ww

where X is as defined in §1.2. This is used in the proof of the theorem of S-units

([Wei95, IV–4, Theorem 9]). The kernel is the group µ(K) of roots of unity contained

in K, and the image is a lattice in RX. We shall record this as a theorem as it will

be cited often.

Theorem 11. [Dirichlet S-unit theorem] The kernel of λ is the group of roots of

unity µ(K) contained in K, and the image is a full lattice in RX with rank #S − 1.

Hence, the group U/µ(K) is a free abelian group on the #S − 1 generators and

1⊗ λ : RU→ RX is an isomorphism.

On tensoring with C, λ induces isomorphism (again called λ):

CU ∼−→ CX

compatible with the natural action of G on U and X.

This implies that the two representations of G QU and QX are isomorphic over

Q (Recall that we showed the invariance of this isomorphy of finite group repre-

sentations by extension of scalars (in characteristic zero) either by passing to the

associated characters [Ser77, §12.1] , the note after prop. 33 or by characterising an

isomorphism as a homomorphism with non-zero determinant-refer to [CF10, p. 110]).

Therefore,

(10) f : QX ∼−→ QU

is an isomorphism of QG-module, and note again

f : CX ∼−→ CU

its complexification.

The automorphism λ ◦ f of CX induces an automorphism (functorial)

HomG(V
∗,CX) HomG(V

∗,CX)

φ λ ◦ f ◦φ

(λ◦f)V

Recall that V∗ is the dual of the vector space V and following Theorem 10, the

dimension of HomG(V
∗,CX) is exactly r(χ).
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Definition 12. The Stark regulator attached to f is defined as:

(11) R(χ, f) = det((λ ◦ f)V)

It is evident that R(χ, f) does not depend on the choice of the vector space V of

χ. The choice of f, on the contrary, is not negligible.

4. Stark’s principal conjecture

In the notations in the previous two paragraphs, the statement of the conjecture

is as follows:

Conjecture 13. Let A(χ, f) = R(χ, f)/c(χ) ∈ C ∈ C. Then, for all automorphisms

σ of C, one has the relation

A(χ, f)α = A(χα, f)

where χα = α ◦ χ : G→ C.

We can decompose our statement in the following manner :

(1) A(χ, f) belongs to Q(χ)

(2) For all σ ∈ Gal(Q(χ)/Q), A(χ, f)σ = A(χσ, f)

Here, Q(χ) is the field of values of χ. It is a cyclotomic extension, and thus Galois

extension of Q. ( [Ser77, §2.1]).

It seems appropriate to reformulate the conjecture starting from the situation

relative to an E (coefficient field) which allows embeddings in C. It is, in fact

sufficient to consider only number fields (finite extension of Q).

Suppose E is a field of characteristic 0 and χ : G → E a character of the rep-

resentation G → GLE(V), where V is a vector space of finite dimension over E.

(Recall that G is the Galois group of the extension K/k). Instead of assuming f is

rational (as in in the previous section), let us take anyG-homomorphism f : X→ EU.

For all α ∈ HomQ(E,C), one can deduce from χ and V a complex character

χα = α ◦ χ of G and its complexification Vα = V ⊗E,α C, to which 2.3 applies. In

particular for each α, we can associate a L-function L(s, χα). Moreover, fα : C→ CU
is defined by C-linearity from (α ◦ 1) ◦ f : X→ CU, and induces the endomorphism

(λ◦fα)Vα of HomG(V
α∗,CX). Denote by R(χα, fα) its determinant (it is independent

of the vector space V over E associated to χ).

In this context, we are then led to the
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Conjecture 14. There exists an element A(χ, f) of E such that, for all α : E→ C,
we have

(12) R(χα, fα) = A(χ, f)α · c(χα)

Remark: The complex conjugation being continuous, it is easy to see that

A(χ, f) = A(χ, f).

4.1. Changing the isomorphism f.

Proposition 15. The conjecture 13 implies conjecture 14.

It is clear that one can always, in conjecture 14, one can reduce to the case E = C
and fix an arbitrary embedding α : E→ C. It is sufficient to show the independence

of choice of f in this case to show that conjecture 13 implies conjecture 14 :

Lemma 16. If the statement in conjecture 14, with E = C, is true for a particular

choice of isomorphism f0 : CX
∼−→ CU, it is also true for all f : X→ CU.

Proof. For each C[G]-endomorphism θ of CX, write δ(χ, θ) for the determi-

nant of the endomorphism θV of HomG(V
∗,C) induced by θ. In fact, δ is clearly

independent of the choice of V associated to χ. One has:

R(χ, f) = δ(χ, λ ◦ f)
The determinants δ obeys the following results:

(1) δ(χ+ χ ′, θ) = δ(χ, θ) + δ(χ ′, θ)

(2) δ(Indχ, θ) = δ(χ, θ)

(3) δ(Inflχ, θ) = δ(χ, θ|CXH)

(4) δ(χ, θθ ′) = δ(χ, θ)δ(χ, θ ′)

(5) δ(χ, f)α = δ(χα, θα) for all α ∈ Aut(C)
Here, item 1 is trivial, item 2 follows from the fact that for all representation W

of the subgroup H of G and for all C[G]-module Z, there is a natural isomorphism

HomG(Ind
G
HW) ≃ HomH(W,Z), where, in the term on the right, Z is considered a

H-module. item 3 refers to the following situation:

Suppose k ⊆ K ′ ⊆ K with K ′/k Galois. Denote by H, the group Gal(K/K ′) and

X ′ the abelian group relative to K ′. We then embed X ′ in X by w ′ =
∑

w ′|w[w :

w ′]w =
∑

h∈Hw
h
0 where [w : w ′] is the degree of the local extension Kw/K

′
w ′ , and

w0 is an arbitrary place of K lying above w. It is this normalisation that makes the

following diagram commutative :

U RX

U ′ RX ′

λ

λ ′
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where the maps λ, λ ′ is as defined in §1.3. We then find that X ′ = NHX where

NH =
∑

h∈H h ∈ Z[G], but not, in general X ′ = XH. Nevertheless, NHX has finite

index in XH, and thus we have EX ′ = EXH for a field E of characteristic 0.

That being said, item 3 is evident, the formula item 4 is trivial, as for item 5,

let α : C → C be be an embedding and write θα = 1 ⊗α θ : C ⊗α CX → C ⊗α CX.
Xα is viewed as C⊗α V by the usual identification

(13) HomC⊗αC[G](C⊗α V
∗,C⊗α CX) = C⊗α HomC[G](V

∗,CX)

The endomorphism (θα)V becomes 1⊗α θV , and the determinant is (det θV)
α.

The statement of the lemma now follows from item 5 and the obvious relation:

A(χ, f) = A(χ, f0)δ(χ, θ)

where θ = f−10 f. □

Example 17. Following the discussion earlier in this section, the conjectures in

section 5 are still equivalent to the statement in Conj. 14 applied to the case E = C
with the isomorphism f = λ−1. This gives R(χ, λ−1) = δ(χ, 1) = 1, and one obtains

this intrinsic but essentially transcendent formulation of the conjecture due to Stark:

For each α ∈ Aut(C), we conjecture that

c(χα)

c(χ)α
= δ(χα, λ ◦ λ−α)

5. Reduction to the abelian case and independence of S

We draw immediately from the previous section the following formulae concern-

ing the numbers A(χ, f) introduced in §1.4 (or, more generally, in conjecture 14,

suppose E ⊆ C):
(1) A(χ+ χ ′, f) = A(χ, f) ·A(χ ′, f)

(2) A(Indχ, f) = A(χ, f)

(3) A(Inflχ, f) = A(χ, f|CXH)

This formalism allows one to reduce Stark’s conjecture, on the one hand to the

case k = Q (by passing to the Galois closure of K and induction), on the other hand

to the case when characters are of dimension 1 (due to the theorem of Brauer, refer

to Appendix F.)

Proposition 18. We have

(1) If the conjecture is true for all finite Galois extensions K/Q, then it is also

true in general.
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(2) If the conjecture is true for all irreducible characters of dimension 1 of all

Galois extensions K/k, then it is also true in general.

This being said, let us pass to the independence of the conjectures on the choice

of S:

The set S fixed in section appears in the conjectures of section through an interme-

diary such as the L-function as well as the definition of the regulator. In fact, one

has the

Proposition 19. The truth of the conjecture 14 is independent of the choice of the

set S.

Proof. We work with the version in . Suppose S is the initial set and let

S ′ = S∪ {p}, where p is a place of k not appearing in S. Denote by U ′, X ′, f ′,etc. the

data in section with S replaced with S ′, as well as c ′(χ), r ′(χ) the initial coefficient

and the multiplicity of LS ′(s, χ) at s = 0 respectively. Finally, let A ′(χ, f ′) be the

resultant number as seen in section. We also assume that f ′ CX = f. Let

B(χ) =
A ′(χ, f ′)

A(χ, f)

We have to show that

Claim: B(χ)α = B(χα) for all α ∈ Aut(C).

As in , and the formulae in , we note that it is sufficient to solve for χ(1) = 1.

This leads us to distinguish the two cases below. Let P be a place of K lying above

p and GP ⊆ G its decomposition group.

Case-1: χ is not trivial on GP

Then we have (as dimC V = dimC V
∗), we have r(χ) = r ′(χ);HomG(V

∗,CX) =

HomG(V
∗,CX ′) and R(χ, f) = R ′(χ, f ′).

On the other hand, if χ is also not trivial on the inertia group IP of P, we find

that LS(s, χ) = LS ′(s, χ), and so B(χ) = 1 = B(χα), which implies the claim. Sup-

pose to the contrary, χ(IP) = 1, then c
′(χ) = (1−χ(σP))c(χ) and, as a consequence

B(χ) = (1− χ(σP))
−1, so that the claim is trivially true.

Case-2: χ(GP) = 1.

Due to property item 3 mentioned at the start of this section, it is enough to

assume GP = 1, which is to say that p splits completely in the extension K/k. In
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this case, LS ′(s, χ) = (1 − Np−s)−1LS(s, χ), so c
′(χ) = c(χ) logNp. On the other

hand, r ′(χ) = r(χ) + 1, and more precisely, if Ph = πOK, for π ∈ K:QU ′ ≃ QU⊕Q[G] · π
QX ′ ≃ QX⊕Q[G] · (P − 1

g
NGw0)

wherew0 is an arbitrary Archimedean place of K, g = #S andNG =
∑

σ∈G σ ∈ Q[G].

In suitable bases, we obtain matrices for λ ′ and f ′ :

M(λ ′) =

(
M(λ) ∗
0 log |π|P · 1G

)
;M(f ′) =

(
M(f) ∗
0 1G

)
As V is of dimension 1, it is easily deduced that the matrix corresponding to the

endomorphism (λ ′ ◦ f ′)V of HomG(V
∗,CX ′) can be put in the form :

M(λ ′) =

(
M((λ ◦ f)V) ∗

0 log |π|P

)
where detM((λ ◦ f)V) = R(χ, f).
Finally, one finds that B(χ) = log |π|P/ logNp, a rational number which does not

depend on χ. This concludes the proof of the proposition. □

6. Statement of Gross-Stark Conjecture

This section follows [Gro81][Ven14]

6.1. Gross’s p-adic regulator. Recall that the definition of Stark regulator

crucially depends on the logarithmic map λ defined in previous section. We also aim

to find such a map. First, we shall build the the theory of p-adic absolute values.

Definition 20. For each place P of K, we can define the local absolute value | · |P,p :
K×

P → Z×
p by

|x|P,p =


1 if KP ≃ C

sign(x) if KP ≃ R

(NP)−vP(x) if P ∤ p

(NP)−vP(x)NKP/Qp if P | p

Remark 21. (1) It can be shown that the product formula holds for the local

absolute values as well. More precisely,∏
P

|x|P,p = 1 ∀ x ∈ K×
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(2) The local absolute values are not exactly the same as the usual absolute

values. For example, if x is a totally positive unit, then |x|P,p = 1 for all

places P but usually if |x|P = 1 for all places P, then x must be a root of

unity.

The second property is a useful property to have. So, we focus our attention to

the subgroup

(K×)− := {x ∈ K× : |x|P,p = 1 ∀ P |∞}

On this subgroup, we have the property that x is a root of unity contained in K if

and only if |x|P = 1 for all finite places P of K. [Gro81, Prop. 1.11]

The above definition can be interpretated in the following manner as well. If τ ∈ G
is the complex conjugation, then

(K×)− = {x ∈ K× : τ(x) = −x}

Next, fix the finite set S of places of K containing all the infinite places and the

places dividing p. Let US,K be the set of S-units of K and let U−
S,K = US,K ∩ (K×)×.

Let YS,K be the free abelian group on the set S and let XS,K be the subgroup of

elements of degree 0 as in the previous section. Motivated from the logarithmic

map λ : U→ RY, we define our local logarithmic map

λp : US,K → QpYS,K

x 7→∑
P∈S

logp |x|P,pP

Due the product formula item 1, the image of λp lies in QpXS,K. We are interested

in knowing whether the induced map λp : QpU
−
S,K → QpXS,K is injective or not.

The measure of how far the map is from being injective is quantified through the

regulator. First, define

op : U
− → X−

x 7→∑
P∤∞ fPvP(x)P

Tensoring by Qp over Z gives the induced map

op : QpU
− → QpX

−

The map op is an isomorphism (just construct the inverse using the finiteness of the

class number of K).

Definition 22. We can define the Gross p-adic regulator via

Rp,K,S = det(λp ◦ o−1p |QpX
−)
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6.2. Statement of the Gross-Stark conjecture. Let k be a totally real

number field and k its algebraic closure. Let E be a field of characteristic 0 and

V the finite dimensional vector space over E with an action of Gk. Consider the

representation

ρ : Gk → GL(V)

that factors through the Galois group of a finite extension K/k. Such a representa-

tion is said to be totally odd if every complex multiplication acts as −1V .

Fix a prime number p, and fix embeddings Q ↪→ C and Q ↪→ Cp. This allows us
to view χ as taking values in C or Cp. Let S be a finite set of places of k containing all
the infinite places of k. To the representation V , we have the S-depleted L-function

(14) LS(s, ρ) =
∏
p̸∈S

det
(
1− σpNp−s|V Ip

)−1
Let S also contain all the divisors of p. Let

ω : G(k(µ2p)/k)→ (Z/2pZ)× → Z×
p

be the Teichmuller character. If α : E → Cp is an embedding, then Vα denotes

the complex representation obtained by change of base. We have the following

interpolation formula:

Lp,S(ω
1−n ⊗ Vα, n) = aS(V,n)α

where aS(V,n) is obtained via the relation

LS(V
β, n) = aS(V,n)

β

with β : E→ C an embedding.

The p-adic L function Lp(ω⊗ Vα, s) is non-zero if and only if V is totally odd.

Next, the Taylor expansion of LS(V
β, s) and Lp,S(ω⊗ Vα, s) at s = 0 gives

• LS(Vβ, s) ∼ L(Vβ)sr(V
β)

• Lp,S(ω⊗ Vα, s) ∼ Lp(Vα)srp(V
α)

Definition 23. Define the regulators

• R(Vβ) = det
(
1⊗ λ ◦ f−1|(Vβ ⊗ CX−)G

)
• Rp(Vα) = det

(
1⊗ λp ◦ o−1p |(Vα ⊗ CX−)G

)
It can be shown that there is an algebraic number A(V) ∈ E× such that for all

embeddings β : E→ C both r(Vβ) = r(V) and L(Vβ) = R(Vβ)A(V)β.

Conjecture 24. For all embeddings α : E→ Cp we have

(1) rp(V
α) = r(V)
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(2) Lp(V
α) = Rp(V

α)A(V)α

This conjecture can be reformulated as

Conjecture 25 (Gross-Stark conjecture). We have

(1) ords=0LS,p(ωχ, s) = r(χ)

(2) lim
s→0 LS,p(ωχ, s)/sr(χ) =

(−1)r(χ)
∏
p∈S
χ(p)=1

fp

 hK

hk

1

|µ(K)|Q

∏
p∈S
χ(p)̸=1

(1− χ(p))



CHAPTER 2

Cohomological interpretation of the conjecture

The notation from this chapter onwards follows [DDP11]. So, instead of K/k we

deal with H/F defined below. We will further assume dimV = 1.

Let F be a totally real field, and

χ : GF :→ Q×

be a totally odd character of the absolute Galois group of F. Let H be the cyclic

extension of F cut out by Ker(χ) (H is a CM extension as well; just look at the fixed

field of the complex conjugation). χ can be seen as operating on the ideals of F via

χ(p) = χ(Frob(p, H/F)) = 0 if p is ramified in H/F and χ(p) = χ(Frob(p, H/F)) if p

is unramified in H/F.

Next, fix a prime number p, and embeddings Q ↪→ C, Q ↪→ Cp. View χ as

having values in C or Cp. Let E be a finite extension of Qp containing all values of

χ.

In this section, we wish to reformulate Rp(χ) cohomologically.

For sake of completeness, we will restate the problem statement again.

Consider a finite set of places S of F containing all the infinite places. Then, the

S-depleted L-function is defined to be

LS(s, χ) :=
∑

gcd(a,v)=1
∀ p∈S

χ(a)Na−s =
∏
p̸∈S

(1− χ(p)Np−s)−1

It is convergent for Re(s) > 1 and has a holomorphic continuation to all of s ∈ C
for nontrivial χ. Due to [DR80] we know of the existence of a continuous E-valued

function

LS,p(χω,−) : Zp → Cp
the p-adic L-function characterised by the interpolation property at negative integers

n ∈ Z≤0 :

LS,p(χω,n) = LS(χω
n, n)

A theorem of Siegel shows that LS(χ, n) is algebraic and using the embedding

Q ↪→ Cp we can view the values to be p-adic. In fact, the function LS,p(χω, s)

is meromophic on Zp and regular as long as χ ̸= ω−1.

16
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Let Sp be the set of places of F above p. We can take S to be Sp ∪ S∞ ∪ {v :

v ramified }. We can partition Sp into

R = {p | p : χ(p) = 1}, R ′ = {p | p : χ(p) ̸= 1}

By the useful observation we made in theorem 10 we can deduce that r := rS(χ) =

#R. Gross conjectured that

Conjecture 26. ords=0LS,p(χω, s) = rS(χ) = r

Remark 27. If T = S\R, then

LS(χ, s) =

(∏
p∈R

1− Np−s
)
LT(χ, s)

Hence, LS(χ, s) = 0 at s = 0 with order rS(χ). By the interpolation property, the

order of vanishing of LS,p(χω, s) at s = 0 is atleast r.

The proof of this conjecture has been given in multiple papers, and is not the

object of our thesis. What is interesting to us is the fact that Gross formulated a

p-adic analog of Stark’s conjecture as stated in conjecture 25 that gives an exact

formula for the leading term of Lp,S(χω, s) at s = 0. We will reconstruct the formula

for our convenience.

Let X be the free abelian group generated by the primes in Sp and U = OH[1/p]
×

be the group of p-units of H. X and U are naturally G-modules for the group

G = Gal(H/F). We will consider the subspaces

U− := {u ∈ U : c(u) = u−1}, X− := {x ∈ X : c(x) = −x}

where c is complex conjugation.

Consider the two continuous homomorphisms for a prime P in OH lying above

p:

ordP = oP :H×
P → Z,

logp ◦NHP/QpℓP = ℓP :H×
P → Zp

These homomorphisms induce two homomorphisms on the minus subspaces we had

defined earlier:

op :U
− → X−

u 7→ (oP(u))P∈Sp

ℓp :U
− → X− ⊗ Zp

u 7→ (ℓP(u))P∈Sp
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The map op induces a Q[G]-module isomorphism

U− ⊗Q ∼−−→ X− ⊗Q

as we have seen earlier. If E is a finite extension of Qp that contains the values of

the character χ, we can define the χ−1 components of the minus subspaces U− and

X−.

Let

Uχ := (U− ⊗ E)χ
−1

:= {u ∈ U⊗ E : σu = χ−1(σ)u ∀ σ ∈ G}

Xχ := (X− ⊗ E)χ
−1

:= {x ∈ X⊗ E : σu = χ−1(σ)u ∀ σ ∈ G}
The Galois equivariant form of Dirichlet’s S-unit theorem tells us that Uχ is a finite

dimensional E-vector space such that

(15) dimEUχ = rS(χ) = r

The following conjecture is what we call the Gross-Stark conjecture:

Conjecture 28 (Gross-Stark). We have the equality

L
(r)
p,S(χω, 0)

r!L(χ, 0)
= Rp

∏
p∈R ′

(1− χ(p))

If we define the invariant

Lalg =
L
(r)
p,S(χω, 0)

r!L(χ, 0)
· 1∏

p∈R ′(1− χ(p))

Then, the main result we want to prove is

Theorem 29. We have Lalg = Rp

1. Rank-1 specific formulation

Definition 30. Following Greenberg, the L-invariant attached to χ is defined via

the ratio

L(χ) := −
ℓP(uχ)

oP(uχ)

Remark 31. • The L-invariant does not depend on the choice of the vector

uχ. Indeed, if u
′
χ is another non-zero vector, then due to the 1-dimensionality

of Uχ as a E-vector space we have u ′
χ = πuχ with π ∈ E×. Thus, both the

numerator and denominator have the extra factor π which cancels out.

• The L-invariant is also independent of the choice of the prime P above p.

Indeed, if P ′ were another prime, then using transitivity of G on P | p

we have P ′ = σP for some σ ∈ G. Consequently, oσ(P) = oP(σ
−1uχ) =

oP(χ(σ)uχ) = χ(σ)oP(uχ), and ℓσP(uχ) = χ(σ)ℓP(uχ) as well. Hence, the

ratio is unaffected by the choice.
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We are now ready to state Gross’s conjecture for our purposes.

Conjecture 32 (Gross). Let F be a totally real field, H a totally complex extension

of F, and χ : Gal(H/K) → C× a character of conductor n. If S = R ∪ {p} and

rS(χ) = 1, then one can show that

L ′
S,p(χω, 0) = L(χ)LR(χ, 0)

To state the main theorem of DDP, we need to introduce some notation.

Definition 33.

Lan(χ, s) :=
−LS,p(χω, 1− s)

LR(χ, 0)

Lan(χ) :=
L ′
S,p(χω, 0)

LR(χ, 0)
= L ′

an(χ, 1)

This definition allows to rephrase the conjecture to asking whether Lan(χ) =

L(χ). The main theorem of DDP says that

Theorem 34. Assuming that Leopoldt’s conjecture holds for F, and the assump-

tions

(1) If |Sp| > 1, then the conjecture is true for all χ.

(2) If |Sp| = 1 and furthermore

(16) ordk=1(Lan(χ, k) + Lan(χ−1, k)) = ordk=1 Lan(χ−1, k)

Then, the conjecture holds for both χ and χ−1.

2. Cohomological interpretation

We define the cyclotomic character

εcyc : GF → Z×
p

By E(χ) we will denote the vector space E on which GF acts via the continuous

action

σ · x = χ(σ)x
Similarly, E(1) is equipped by the continuous action of the cyclotomic character.

Thus, E(χ)(1) has a continuous action of χεcyc, and E(χ
−1) the action via χ−1.

3. Local Cohomology groups

Let v be a place of F, Gv ≃ GFv , Iv ⊆ Gv be choice of decomposition group and

inertia group at v.

Let pE = ⟨π⟩ be the maximal ideal of OE. Tate’s local duality gives a perfect

pairing

⟨, ⟩v,n : H1(Fv,OE/π
n(χ−1))×H1(Fv,OE/π

n(χ)(1))→ OE/π
n
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Taking limit n→∞ and then tensoring with E leads to the perfect pairing

(17) ⟨ , ⟩v : H1(Fv, E(χ−1))×H1(Fv, E(χ)(1))→ E

Definition 35. If M is a GF-module, then the inflation-restriction sequence gives

0 H1(Gv/Iv,M
Iv) H1(Fv,M) H1(Iv,M)Gv/IvInf resIv

The unramified classes classes are exactly the classes of H1(Fv,M) that lie in the

kernel of resIv.

If χ(Gv) ̸= 1, then Gv/Iv is a pro-cyclic group. Hence,

H1(Gv/Iv,OE/π
n(χ−1)Iv) = Ĥ−1(Gv/Iv,OE/π

n(χ−1)Iv)

= (OE/π
n(χ−1)Iv)/(χ−1(v) − 1)

Thus, the quotient has bounded size independent of n. Or equivalently, if we

take limit over n, then the limit has torsion. Consequently, tensoring with E tells

us that H1(Gv/Iv, E(χ
−1)Iv) = 0 and hence there are no unramified classes.

Assume χ(Gv) = 1. Then,

(1) H1(Fv, E(χ
−1)) = H1(Fv, E) = Homcts(Gv, E) contains an unramified class

κunr : Gal(Funrv /Fv)→ OE, Frobv 7→ 1

(2) If v | p, then we have a ramified class, namely the restriction of the logarithm

of the cyclotomic character to Gv. In particular, we are concerned with

κcyc = logp(εcyc) ∈ H1(F, E)

(3) Kummer theory gives a connecting homomorphism (which is an isomophism)

δv,n : F×v ⊗ Z/pnZ→ H1(Fv,Z/pnZ(1))

If we let F×v ⊗̂E := (lim←−n
F×v ⊗Z/pnZ)⊗Zp E, then the connecting homomor-

phism of Kummer theory becomes the isomorphism

δv : F
×
v ⊗̂E→ H1(Fv, E(1))

(4) We can calculate the pairing. Let u ∈ F×v ⊗̂E, note that

• ⟨κunr, δv(u)⟩v = −κunr((u, Fv|Fv)) = −κunr((u, F
unr
v |Fv)) = −ov(u)

• This uses some calculation as can be found in [AT90][Neu13][NSW08]

⟨κcyc, δv(u)⟩v = −(logp ◦εcyc)((u, Fv|Fv))

= −(logp ◦εcyc)(NFv/Qp(u), Fv|Qp)

= − logp(NFv/Qp(u
−1))

= −ℓv(u)
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The above observation helps us view δv(F
×
v ⊗̂E) as the orthogonal comple-

ment to κunr under the local Tate duality.

[DDP11, see Lemma 1.3] also calculate the dimensions of the two spacesH1(Fv, E(χ)(1))

and H1(Fv, E(χ
−1)). In fact, the dimensions of both the spaces are same, given by

[Fv : Qp] χ(Gv) ̸= 1, v | p
[Fv : Qp] + 1 χ(Gv) = 1, v | p

1 χ(Gv = 1), v ∤ p∞
0 otherwise

4. Global Cohomology groups

Recall the definition of unramified class

H1unr(Fv, E(χ
−1)) ≃ H1(Gv/Iv, E(χ−1)Iv)

The orthogonal complement of the space H1unr(Fv, E(χ
−1)) under the local Tate du-

ality is denoted by

H1unr(Fv, E(χ)(1)) := {u ∈ H1(Fv, E(χ)(1)) : ⟨κ, u⟩v = 0 ∀ κ ∈ H1unr(Fv, E(χ−1))}

Under the observation

H1unr(Fv, E(χ
−1)) =

E · κunr χ(Gv) = 1

0 otherwise

we have

H1unr(Fv, E(χ)(1)) =

O×
v ⊗̂E χ(Gv) = 1

H1(Fv, E(χ)(1)) otherwise

Definition 36. By H1R(F, E(χ
−1)) we denote the subgroup of H1(F, E(χ−1)) consisting

of classes unramified outside of R and arbitrary at R.

The corresponding orthogonal complements under the local Tate duality is de-

noted by H1R(F, E(χ)(1)) ⊆ H1(F, E(χ)(1)).

Proposition 37. The map

δ : Uχ → H1R(F, E(χ)(1))

induced by Kummer theory is an isomorphism. In particular, as a E-vector space,

H1R(F, E(χ)(1)) has dimension r.

Proof. Consider a group G, with subgroup H. The five term inflation restric-

tion exact sequence has the following (truncated) form:

0 H1(G/H,AH) H1(G,A) H1(H,A)G H2(G/H,AH)inf res
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If we set G = Gal(H/F), GH = Gal(F/H) and use the fact that Gal(F/H) =

Gal(H/H) as H = F, we get the following sequence:

0 H1(G,E(χ)(1)GH) H1(F, E(χ)(1)) H1(H,E(χ)(1))G H2(G,E(χ)(1)GH)inf res

The restriction map

res : H1(F, E(χ)(1))→ H1(H,E(χ)(1))G(18)

is an isomorphism. Indeed, as εcyc(GH) ̸= 1, E(χ)(1)GH ⊆ E(1)GH = 0 and hence

E(χ)(1) = 0. Therefore, the groups H1(G,E(χ)(1)GH) and H2(G,E(χ)(1)GH) are

trivial, establishing the isomorphism.

Next, we claim that H1(F, E(χ)(1))G = H1(F, E(1))χ
−1
. Indeed, suppose [σ] is a

cohomology class in H1(F, E(χ)(1))G, then the classes [g ·σ] and [σ] are the same for

any g ∈ G. But,

g · σ(x) = g · σ(gxg−1) = χ(g)εcyc(g)σ(gxg−1)

for all g ∈ G, x ∈ H. Then, the classes [χ−1σ] and [x 7→ εcyc(g)σ(gxg
−1)] are the

same. We therefore have

H1(F, E(χ)(1)) ≃ H1(H,E(χ)(1))G = H1(H,E(1))χ
−1 ≃

(
H×⊗̂E

)χ−1

where the last isomorphism is due to Kummer theory as shown in the previous

section (replace Fv with H). Locally, we have the isomorphism:

H1(Fv, E(χ)(1)) ≃
(
H×
w⊗̂E

)χ−1

Next, consider the diagram:

H1(F, E(1)(χ)) H1(H,E(1))χ
−1 (

H×⊗̂E
)χ−1

∏
v ̸∈R

H1(Fv, E(1)(χ))
∏
w ̸∈RH

H1(Hw, E(1))
χ−1

∏
w ̸∈RH

(
H×
w⊗̂E

)χ−1

Recall that H1unr(Fv, E(χ)(1)) is the orthogonal complement of H1unr(Fv, E(χ
−1)) un-

der the local Tate pairing. Such an element of H1(Fv, E(1)(χ)) =
(
H×
w⊗̂E

)χ−1

has to

be an unit at v by our calculations on the Tate pairing. Therefore, Uχ is precisely

the pre-image of H1R(F, E(χ)(1)). □

If Wv is a subspace of H1(Fv, E(χ
−1)), define

H1Wv,v
(F, E(χ−1)) ⊆ H1v(F, E(χ−1))
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to be the subspace consisting of classes whose image under the map resIp lies inWv.

The dimension of this new subspace is also of interest to us. The following theorem

addresses this question.

Proposition 38. Suppose W = (Wv)v∈R is a family of subspaces, Wv ⊆ H1(Fv, E)

is a subspace containing the unramified cocycle κunr,v. If we define H1W,R(F, E(χ
−1))

to be the subspace of H1R(F, E(χ
−1)) consisting of classes whose image under resIv lies

in Wv for each v ∈ R. Then,

dimEH
1
W,R(F, E(χ

−1)) =

(∑
v∈R

dimEWv

)
− |R|

Proof. The Poitou-Tate exact sequence from Galois cohomology gives the fol-

lowing exact sequence:

0→ H1[R](F,OE/π
n(χ−1))→ H1R(F,OE/π

n(χ−1))→∏
v∈R

H1(Fv,OE/π
n(χ−1))→ H1R(F,OE/π

n(χ)(1))∨
(19)

where the first map is the inclusion as

H1[R](F,OE/π
n(χ−1)) := {σ ∈ H1R(F,OE/π

n(χ−1)) : resIvσ = 0}

and, the last map is the one induced from the local Tate pairing. Consider the

inflation-restriction sequence:

0 H1(Gal(H/F),OE/π
n(χ−1)) H1(GF,OE/π

n(χ−1)) H1(GF,OE/π
n(χ−1))inf res

Now, H1(Gal(H/F),OE/π
n(χ−1)) = NOE/π

n/IGal(H/F)OE/π
n as Gal(H/F) is a finite

cyclic group. The right hand side is finite group of size bounded independently

of n. This means the classes of H1[R](F,OE/π
n(χ−1)) map to (with kernel bounded

independently of n) group homomorphisms from GH → OE/π
n that are everywhere

unramified. Such maps factor through class group Cl(H) ofH. Hence, H1[R](F, E(χ
−1))

has bounded cardinality as n goes to infinity. Taking the limit of n → ∞ and

tensoring with E gives the sequence:

0→ H1R(F, E(χ
−1))→∏

v∈R

H1(Fv, E(χ
−1))→ H1R(F, E(χ)(1))

∨(20)

The element κunr,v is mapped to a non-zero element of H1R(F, E(χ)(1))
∨ as the Tate

pairing is non-degenerate. We want to show that the images of κunr, v are linearly

independent. This follows from the fact that (OH[1/p]
× ⊗ E)χ

−1

is 1-dimensional as

an E-vector space. As H1R(F, E(χ)(1))
∨ is r-dimensional by proposition 37, the last

arrow in eq. (20) is surjective. In fact, the sequence restricts to

0→ H1R(F, E(χ
−1))→∏

v∈R

Wv → H1R(F, E(χ)(1))
∨(21)
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for subspaces Wv ⊆ H1(Fv, E) containing κunr,v. This concludes the proof. □

We will end this section by recording an important proposition that showcases

the major difference between the rank one and the general case.

Theorem 39. The restriction map

r∏
i=1

resIpi : H
1
R(GF, E(χ

−1))→ r∏
i=1

H1(Ipi , E)

is injective.

5. L-invariant and proof strategy

We have proven that dimEUχ = r. Let u1, . . . , ur be an E-basis for Uχ. Write

R = {p1, . . . , pr}. For each pi, we have the continuous homomorphisms:

ordpi = oi : F
×
pi
→ Z,

logp ◦NFpi/Qp = ℓi : F
×
pi
→ Zp

For each pi, choose Pi of H lying above pi. Then, using

OH[1/p] ⊆ H ⊆ HPi
≃ Fpi

we can evaluate oi, ℓi on elements of OE[1/p]
× and extend linearly to E and obtains

maps:

oi, ℓi : OH[1/p]
× ⊗ E→ E

Gross’s p-adic regulator can be explicitly written as the ratio:

Rp(χ) =
det(−ℓi(uj))

det(oi(uj))

where (i, j) run from (1, 1) to (r, r).

Remark 40. The ratio is well-defined. As the χ−1 component of the group of pi
units of H is 1-dimensional for each i, we can choose our ujs such that oi(uj) = δi,j
where δi,j is the Kronecker delta. The ratio does not depend on the choice of ujs as

well. For two units differ by an unit, the ℓi maps the two units to the same quantity

and so does the order. The ratio is also independent of the choice of Pi. Indeed,

if we replace Pi with σPi, then both the numerator and denominator are scaled by

χ(σ) rendering the ratio same as before.

Define the subspace of cyclotomic classes

H1cyc(χ) ⊆ H1R(GF, E(χ−1))
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to consist of those classes κ whose restriction respi κ ∈ H1(Gpi , E) lies in the span

of κunr,pi and κcyc,pi . From proposition 38, it is clear that dimEH
1
cyc(χ) = r. Let

κ1, . . . , κr be an E-basis for H1cyc(χ), and for each pj ∈ R, let

respj κi = xijκunr,pj + yijκcyc,pj

Again, inspired by Greenberg, we define the algebraic invariant to be

Lalg =
det(xij)

det(yij)

If det(yij) = 0, then we can find a basis κ ′
1, . . . , κ

′
r such that

respj κ
′
i = xijκunr,pr

This means the two spaces H1cyc(χ), H
1
W(GF, E(χ

−1)) are equal whereW = (Wi)i=1,...,r

is a family of subspaces such that Wi = span{κunr,pi , κcyc,pi} for i = 1, . . . , r− 1 and

Wr = span{κunr,pr} But clearly, the dimension of the two spaces are different. A

contradiction. Hence, det(yij) must be non-zero and thus the ratio is well-defined.

Proposition 41. Let κ ∈ H1R(GF, E(χ−1)) and u ∈ Uχ. We can show that

r∑
i=1

(respi κ)(u) = 0(22)

Proof. From the Poitou-Tate duality, the product of the images ofH1R(GF, E(χ
−1))

and H1R(GF, E(χ)(1)) under the product of restriction maps respi are orthogonal un-

der the local Tate duality map:

⟨ , ⟩R :
r∏
i=1

H1(Gpi , E(χ
−1))×

r∏
i=1

H1(Gpi , E(χ)(1))
∑

⟨ , ⟩pi−−−−→ E

Using the isomorphism δ : Uχ ≃ H1R(GF, E(χ)(1)) we have

0 = ⟨κ, δ(u)⟩R =
r∑
i=1

⟨respi(κ), δ(u)⟩pi

=

r∑
i=1

(respi(κ))(u)

□

Corollary 42. We have

Lalg = Rp(χ)

Proof. Let u1, . . . , ur be a basis of Uχ as an E-vector space and κ1, . . . , κr a

basis for H1cyc(χ). Using the previous proposition, we have

r∑
i=1

(respi κj)(uk) = 0
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for all j, k = 1, . . . , r. As a matrix this means
x11 x21 · · · xr1

x12 x22 · · · xr2
...

...
...

...

x1r x2r · · · xrr



o1(u1) o1(u2) · · · o1(ur)

o2(u2) o2(u2) · · · o2(ur)
...

...
...

...

or(u1) or(u2) · · · or(ur)



= −


y11 y21 · · · yr1

y12 y22 · · · yr2
...

...
...

...

y1r y2r · · · yrr



ℓ1(u1) ℓ1(u2) · · · ℓ1(ur)

ℓ2(u2) ℓ2(u2) · · · ℓ2(ur)
...

...
...

...

ℓr(u1) ℓr(u2) · · · ℓr(ur)


Hence,

Lalg =
det(yij)

det(xij)
=

det(ℓi(uk))

det(oi(uk))

□

6. Formula for L invariant in rank-1 and proof strategy

Definition 43. If Wcyc is the subspace of H1(Fp, E) spanned by the classes κunr and

κcyc, define

(23) H1p,cyc(F, E(χ
−1)) := H1p,Wcyc

(F, E(χ−1))

By the previous proposition, the space H1p,cyc(F, E(χ
−1)) is 1-dimensional over E.

Thus, any non-trivial element κ in this space is of the form

resIp(κ) = xκunr + yκcyc

for some x, y ∈ E. y ̸= 0 for it contradicts the dimension when Wcyc is spanned by

just κunr. As the space is 1-dimensional, the choice of κ does not change the ratio

y/x.

By the reciprocity law of Global Class Field theory, we have

⟨κ, δ(uχ)⟩ =
∑
v

⟨resIvκ, δv(uχ)⟩v

= ⟨resIpκ, δp(uχ)⟩p
= x⟨κunr, δp(uχ)⟩p + y⟨κcyc, δp(uχ)⟩p
= −x · op(uχ) + yℓp(uχ)

But ⟨κ, δ(uχ)⟩ = 0 by definition. Hence, L(χ) = −x/y.

Conjecture 44. The above observation allows us to reduce our theorem to the fol-

lowing:
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There exists a nontrivial class κ ∈ H1p,cyc(F, E(χ−1)) satisfying

resIp(κ) = xκunr + yκcyc



CHAPTER 3

Construction of cusp form

Main references are [DDP11][Shi78][Gar90]

1. Hilbert Modular Forms

Let F be a totally real number field of degree n = [F : Q]. The embeddings be

τ1, . . . , τn. If a ∈ OF, then a can be seen as an element of F ↪→ R via the tuple

a = (ai := τia)i.

Let ψ be a narrow ray class character modulo b with sign r ∈ Fn2 . If α ∈ OF is

relatively prime to b, we can define a character associated to ψ by

ψf : (OF/b)
× → Q×

, α 7→ sign(α)rψ(⟨α⟩)

Fix an integer k. Let λ ∈ Cl+(F) be an ideal class, choose a representative

fractional ideal tλ. Let GL+
2 (F) denote the 2× 2 matrices with elements from F such

that the determinant is totally positive (all galois conjugates are positive). Define

the level

Γλ :=

{(
a b

c d

)
∈ GL2(F) : a, d ∈ OF, b ∈ t−1λ d−1, c ∈ btλd, ad− bc ∈ O×

F

}
The spaceMk(b, ψ) of Hilbert modular forms of level b and character ψ consists

of functions f = (fλ)λ∈Cl+(F) with

fλ : Hn → C

such that each function fλ satisfies

fλ|γ = ψf(a)fλ

for all γ ∈ Γλ where the slash operator |γ is defined to be

fλ|γ(z) := det(γ)k/2(cz+ d)−kfλ(γz)

(cz+ d)k :=

n∏
i=1

(cizi + di)
k

det(γ)k/2 :=
n∏
i=1

det(γi)
k/2

γz :=

(
a1z1 + b1
c1z1 + d1

, · · · , anzn + bn
cnzn + dn

)
28
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The function f ∈Mk(b, ψ) must also satisfy

(24) S(m)f = ψ(m)f ∀ gcd(m, b) = 1

It can be shown that fλ has a Fourier expansion

(25) fλ(z) = aλ(0) +
∑
b∈tλ
b>>0

aλ(b) exp(2πiTrF/Q(x))

Definition 45. The coefficients aλ(b) are called unnormalised Fourier coefficients

of f. We define the normalised Fourier coefficients c(m, f), c(0, f) to be

c(m, f) := aλ(b)Nt−k/2λ , c(0, f) := aλ(0)Nt−k/2λ

where an integral ideal m = bt−1λ for a totally positive element b and an unique λ.

Remark 46. Note that the definition does not depend on the choice of b. Indeed, any

other choice of b would differ by a totally positive unit ϵ, and modularity condition

would imply fλ(ϵz)Nϵk/2 = fλ(z).

Definition 47. If for each γ ∈ GL2(F)
+ and λ ∈ Cl+(F), the function f|γ has

constant term 0, then we say f is a cusp form. The space of cusp forms of weight

k, level b and character ψ is denoted by Sk(b, ψ).

2. Eisenstein series

A standard example of Hilbert modular forms come from Eisenstein series asso-

ciated to two narrow ray class characters.

Let a, b be two integral ideals of F, η,ψ be two narrow ray class characters

modulo a, b respectively. Also, suppose the signs of η,ψ are q, r satisfying

q+ r ≡ (k, k, . . . , k) mod 2Zn

Then it can be shown that [DDP11, Proposition 2.1][Shi78, Proposition 3.4] there

exists Ek(η,ψ) ∈Mk(ab, ηψ) such that

(26) c(m,Ek(η,ψ)) =
∑
r|m

η(m/r)ψ(r)Nrk−1
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In fact, the constant term of the Eisenstein series can be computed explicitly[DDP11,

Proposition 2.1], as seen in the following

(27)

cλ(0, Ek(η,ψ)) =



2−nη−1(tλ)LS(ψη
−1, 1− k) k > 1, a = 1,

0 k > 1, a ̸= 1,
2−nη−1(tλ)LS(ψη

−1, 0) k = 1, a = 1, b ̸= 1,
2−nψ−1(tλ)LS(ηψ

−1, 0) k = 1, a ̸= 1, b = 1,

2−n(η−1(tλ)LS(ψη
−1, 0) +ψ−1(tλ)LS(ηψ

−1, 0)) k = 1, a = 1, b = 1,

0 k = 1, a, b ̸= 1

3. Construction of cusp form in r = 1

Definition 48. Whenever L(ψ, 1− k) ̸= 0, the normalised Eisenstein series can be

defined as

(28) Gk(1,ψ) :=
2n

L(ψ, 1− k)
Ek(1,ψ)

Using the values of Ek(1,ψ) as in the last proposition, we observe that cλ(Gk(1,ψ), 0) =

1.

Recall that χ : GF → Q×
is a character of conductor n and χ(p) = 1. Let

nR = lcm

n,
∏

q|p,q̸=p

q

 , nS = lcm

n, p
∏

q|p,q ̸=p

q


We will view χ as a character χR(resp. χS = χω

1−k) with modulus nR(resp. nS).

We will concern ourselves with the modular form

(29) Pk := E1(1, χR)Gk−1(1,ω
1−k) ∈Mk(nS, χω

1−k)

The modular form Gk−1(1,ω
1−k) makes sense as can be seen from the functional

equation of LS(χ, s).

[Wil86]Every modular form inMk(nS, χω
1−k) can be written uniquely as a linear

combination of a cusp form and the Eisenstein series Ek(η,ψ) with the pair (η,ψ)

running over the set J of characters with modulus mη,mψ respectively satisfying

(30) mηmψ = nS, ηψ = χω1−k

More concretely,

(31) Pk = (cusp form) +
∑

(η,ψ)∈J

ak(η,ψ)Ek(η,ψ)

As we are interested in constructing a cusp form, we would like to remove the

contribution from Eisenstein series in the above expression. This is achieved with
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the help of an appropriate Hecke operator as will be developed later in this section.

We are interested in the coefficients ak(χ,ω
1−k) and ak(1, χω

1−k) for it turns out

that their values are ratios of the classical L-functions and p-adic L-functions. We

will record this fact in the following

Proposition 49. [DDP11, Proposition 2.6, 2.7] If k ∈ Z≥2, then

ak(1, χω
1−k) =

LR(χ, 0)

LS,p(χω, 1− k)
= −Lan(χ, k)−1

If k ∈ Z>2 and p is the unique prime above p (|Sp| = 1), then

ak(χ,ω
1−k) =

LR(χ
−1, 0)

LS,p(χ−1,ω, 1− k)
⟨Nn⟩k−1 = −Lan(χ−1, k)−1⟨Nn⟩k−1

Proof. It follows simply by comparing coefficients on both sides of the equation

Pk = (cusp form) +
∑

(η,ψ)∈J

ak(η,ψ)Ek(η,ψ)

and using the linear independence of characters of the narrow ray class group Cl+(F).

□

If q is a prime ideal, we denote by Tq, Uq the Hecke operators. They act on the

Eisenstein series in the following manner

TqEk(η,ψ) = (η(q) +ψ(q)(Nq)k−1)Ek(η,ψ) q ∤ nS
UqEk(η,ψ) = (η(q) +ψ(q)(Nq)k−1)Ek(η,ψ) q | nS

= η(q)Ek(η,ψ) q ∤ mη

= ψ(q)(Nq)k−1Ek(η,ψ) q | mη

Definition 50. Remember that E/Qp is a finite extension containing the values of

χ. Consider the OE-submodule Mk(nS, χω
1−k;OE) ⊆ Mk(nS, χω

1−k) consisting of

modular forms with the normalised Fourier coefficients lying in the ring OE. The

ordinary projector or Hida’s idempotent [Hid93] defined as

(32) e := lim
r→∞

∏
q|p

Uq

r!

is an idempotent in End(Mk(nS, χω
1−k;OE)). We can extend it toMk(nS, χω

1−k;E)

E-linearly using the fact that

Mk(nS, χω
1−k;OE)⊗OE

E =Mk(nS, χω
1−k;E)

It is easy to see that eEk(η,ψ) = Ek(η,ψ) if gcd(p,mη) = 1 and 0 otherwise.

This allows us to formulate
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Proposition 51. [DDP11, Proposition 2.8] If P0k = ePk, then

P0 = ( an ordinary cusp form) +
∑

(η,ψ)∈J0
ak(η,ψ)Ek(η,ψ)

where (η,ψ) runs through the set J0 consisting of the pairs (η,ψ) such that

(33) mηmψ = nS, ηψ = χω1−k, gcd(p,mη) = 1

Lemma 52. [DDP11, Lemma 2.9]

(1) For each (η,ψ) ∈ J0 with η ̸∈ {1, χ}, we have a Hecke operator T(η,ψ) such

that

T(η,ψ)Ek(η,ψ) = 0, T(η,ψ)E1(1, χS) = 1

(2) If the set R = S − {p} contains a prime above p, then there is a Hecke

operator T(χ,ω1−k) satisfying

T(χ,ω1−k)Ek(χ,ω
1−k) = 0, T(χ,ω1−k)E1(1, χS) = 1

If F has prime above p other than p, then set

uk :=
1

1+ Lan(χ, k)
, wk :=

Lan(χ, k)
1+ Lan(χ, k)

, vk := 0

If p is the unique prime in F above p, then set

uk :=
Lan(χ, k)−1

ck
, wk :=

1

ck
, vk :=

Lan(χ−1, k)−1⟨Nn⟩k−1

ck

where

ck = Lan(χ, k)−1 + Lan(χ−1, k)−1⟨Nn⟩k−1 + 1
As a direct corollary to the lemma and the notations above, we have

Theorem 53. [DDP11, Corollary 2.10] If Hk := ukEk(1, χω
1−k)+vkEk(χ,ω

1−k)+

wkP
0
k, then the modular form

Fk :=

∏
(η,ψ)

T(η,ψ)

Hk
is a cusp form belonging to Sk(nS, χω

1−k). The product is over J0 with η ̸= 1 if F

has primes other than p above p and the product is over J0 with η ̸= 1, χ if p is the

only prime in F above p.

4. General rank, i.e. r ≥ 1

Please come back to this section after reading the next chapter, section 1.

Recall that we have constructed a Hida family G ∈ Mo(1,ω−1)⊗ΛΛ(0) with the

property that ν0(G) = 1 and cλ(0,G) = 1 for all λ ∈ Cl+(F).
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We set

Gk := νk(G) ∈Mk(p,ω
−k)

For an integer k ≥ 1, we define (Case 1: When R ′ is non-empty)

Hk := Ek(1, χω
1−k) − E1(1, χR ′)Gk−1

Lp(χω, 1− k)

L(χR ′ , 0)
(34)

Here L(χR ′ , 0) is the R ′-depleted L function and hence upto multiplication by 2−[F:Q],

it is the value of the constant term of E1(1, χR ′).

When R ′ = ∅, we let

Hk := Ek(1, χω
1−k) − E1(1, χ)Gk−1

Lp(χω, 1− k)

L(χ, 0)
+ Ek(χ,ω

1−k)
Lp(χω, 1− k)

L(χ, 0)

L(χ−1, 0)

Lp(χ−1ω, 1− k)

(35)

In eq. (34), as per our observations above and eq. (27) the constant term is 0.

Similarly, in eq. (35) as well, the constant term is 0.



CHAPTER 4

Hida Families and Hecke Algebras

1. Λ-adic Eisenstein series

Recall that the Iwasawa algebra Λ ≃ OE[[T ]] is topologically generated over OE

by the functions of the form k 7→ uk with u ∈ 1 + 2pZp. For each k ∈ Zp we have

a homomorphism

νk : Λ→ OE, T 7→ uk−1 − 1

called the specialisation to weight k. Λ(k) will denote the localisation of Λ at Kerν1,

and sometimes we will view νk as a homomorphism from Λ(1) → E.

Definition 54. A family F = {c(m,F), cλ(0,F),m integral ideals of F, λ ∈ Cl+(F)}

is a Λ-adic form of level n and character χ if for all finitely many k ≥ 2 there exists

fk ∈ Mk(nS, χω
1−k;E) such that νk(c(m,F)) = c(m, fk), νk(cλ(,F)) = cλ(0, fk) is

called a Λ-adic modular form.

Furthermore, if νk(F) is in Sk(nS, χω
1−k) for all but finitely many k ≥ 2, then

we say F is a Λ-adic cusp form.

The space of Λ-adic modular forms (resp. cusp forms) of level n and character

χ is denoted by M(n, χ) (resp. S(n, χ)). By extension of scalars, the elements of

M(n, χ) ⊗Λ FΛ (resp. S(n, χ) ⊗Λ FΛ) are also called Λ-adic modular forms (resp.

cusp forms).

The usual Hecke operators Tq, Uq commute with specialisation. Thus, the action

of these operators on the spaces Mk(nS, χω
1−k), Sk(nS, χω

1−k) give rise to action in

the space M(n, χ) that preserves S(n, χ). We also define the ordinary subspaces

Mo(n, χ) := eM(n, χ), So(n, χ) := eS(n, χ)

It is well known that the ordinary subspaces are finitely generated torsion-free Λ-

modules. Let

T̃ ⊆ End(Mo(n, χ)), T ⊆ End(So(n, χ))
be the Λ algebras generated by the Hecke operators Tq, Uq.

By extension of scalars, the elements of Mo(n, χ)⊗Λ FΛ (resp. So(n, χ)⊗Λ FΛ) are
also called Λ-adic modular forms (resp. cusp forms).

Proposition 55. [DDP11, Proposition 3.2] If η,ψ is a pair of narrow ray class

characters modulo mη,mψ respectively, such that ηψ is totally odd. Then, there

34
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exists a Λ-adic modular form

E ∈ M(mηmψ, ηψ)⊗Λ FΛ

such that

νk(E(η,ψ)) = Ek(η,ψω
1−k)

Proof.

c(m, Ek(η,ψω
1−k)) =

∑
r|m

η(m/r)ψ(r)ω1−k(r)Nrk−1

=
∑
r|m

gcd(r,p)=1

η(m/r)ψ(r)⟨Nr⟩k−1

Moreover, if we choose s ∈ Zp such that ⟨Nr⟩ = us. Then,

νk((1+ T)
s) = ⟨Nr⟩k−1

Thus, the terms on the right hand side can be seen as specialisation of elements in

Λ. Moreover, the LS,p(η
−1ψω, 1−k) can also be seen as specialisation of an element

of Λ. Hence, Ek(η,ψω
1−k) can be seen as a specialisation of an appropriate Λ-adic

form. This completes the proof. □

Definition 56 (Shifted weight forms). A family M ′ = {c(m,F), cλ(0,F),m inte-

gral ideals of F, λ ∈ Cl+(F)} is a Λ-adic form of level n and character χ if for all

finitely many k ≥ 2 there exists fk ∈ Mk−1(nS, χω
1−k;E) such that νk(c(m,F)) =

c(m, fk), νk(cλ(,F)) = cλ(0, fk) is called a Λ-adic modular form.

Proposition 57. There exists an element G ∈ M ′ ⊗Λ FΛ such that

νk(G) = Gk−1(1,ω
1−k)

Furthermore, if Leopoldt’s conjecture holds for F, then the form G ∈ M ′ ⊗Λ Λ(1),

and

ν1(G) = 1

Proof. The existence of G follows by defining it via

νk(c(m,G)) = 2
nζp(F, 2− k)

−1
∑
r|m

gcd(r,p)=1

η(m/r)ψ(r)⟨Nr⟩k−1, νk(cλ(0,G)) = 1

If Leopoldt’s conjecture holds, then by a result of Colmez cite Colmez, the p-adic

zeta-function ζp(F, s) has a pole at s = 1 and thus ζp(F, 2− k)
−1 is regular at s = 1

and vanishes at that point. This completes the proof. □

It is crucial to observe that this is the place where we use the Leopoldt conjecture

assumption in theorem 34 to show the existence of such a G. The Leopoldt conjecture

was removed by Ventullo in his thesis [Ven14]. He showed that:
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Theorem 58. There exists a Hida family G ∈ Mo(1,ω−1) ⊗Λ Λ(0) with the

property that ν0(G) = 1 and cλ(0,G) = 1 for all λ ∈ Cl+(F).

We set

Gk := νk(G) ∈Mk(p,ω
−k)

Notice that we no more have any control over what the G looks like like we earlier

did. This is going to present a serious challenge in what is to follow.

Remark 59. If you came from the previous chapter on constructing the cusp-form,

now is the time to go back.

2. Λ-adic cusp form

Very naturally, we want to know if our classical modular forms Pk, P
o
k, Hk and

the cusp form Fk can be interpolated p-adically. This is where the slightly ad-hoc

condition in the hypothesis comes in handy.

Proposition 60. [DDP11, Proposition 3.4, Lemma 3.5] Suppose Leopoldt’s conjec-

ture holds for F, and

ordk=1(Lan(χ, k) + Lan(χ−1, k)) = ordk=1 Lan(χ−1, k)

Then there exist Λ-adic forms P ∈ M(n, χ) ⊗ Λ(1),P
o,H ∈ Mo(n, χ) ⊗ Λ(1),F ∈

So(n, χ)⊗Λ(1) such that for all k ≥ 2

νk(P) = Pk, νk(P
o) = Po, νk(H) = Hk, νk(F) = Fk

In particular, the weight 1 specialisations are

ν1(P) = ν1(P
o) = E1(1, χR), ν1(H) = E1(1, χS),

ν1(F) = tE1(1, χS) for some t ∈ E×

Proof. Set

P = E1(1, χR)G,P
o = eP

Here, the G is the one created explicitly under the assumption of Leopoldt conjecture

(NOT the one due to Ventullo).

To define Hk recall that we had the coefficients uk, vk, wk. They can themselves

be viewed as specialisations of u, v,w ∈ FΛ such that u(k) = uk, v(k) = vk, w(k) =

wk for all but finitely many k ≥ 2. Using the technical condition stated in the

hypothesis, we can show that u, v,w ∈ Λ(1) and u is invertible in this ring. Then,

we set

H := uE(1, χ) + vE(χ, 1) + vPo

which belongs to M0(η, χ)⊗Λ(1) and the specialisation νk(Hk) = Hk.
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Note that the Hecke operators defined in the previous chapter can be viewed as

elements of the ordinary Λ-adic Hecke algebra T̃. If we set

F :=
∏
(η,ψ)

T(η,ψ)H

we obtain the desired Λ-adic cusp form with specialisation νk(F) = Fk. □

Next, we wish to interpolate the semi-cusp forms constructed in previous chapter.

Recall the two semi-cusp forms:

Hk := Ek(1, χω
1−k) − E1(1, χR ′)Gk−1

Lp(χω, 1− k)

L(χR ′ , 0)

(36)

Hk := Ek(1, χω
1−k) − E1(1, χ)Gk−1

Lp(χω, 1− k)

L(χ, 0)
+ Ek(χ,ω

1−k)
Lp(χω, 1− k)

L(χ, 0)

L(χ−1, 0)

Lp(χ−1ω, 1− k)

(37)

where the first one is when R ′ ̸= ∅ and second one is when R ′ = ∅.
We want to interpolate these forms to appropriate Hida families. First, note

that T 7→ (1+ T)u−1 − 1 has the effect of shifting the specialisation map from k to

k− 1. More precisely, we have

νk(G((1+ T)u
−1 − 1)) = νk(G(T))

In case 1, i.e. when R ′ ̸= ∅, we have the Λ-adic family:

H = E(1, χ) − E1(1, χR ′)G((1+ T)u−1 − 1)
L(χω)

L(χR ′ , 0)
(38)

where L(χω) ∈ Λ(1) is the (Λ-adic) p-adic L-function whose specialisation is νk(L(χω)) =

Lp(χω, 1− k). Hence, νk(H) = Hk for all positive integers k in the neighbourhood

of 1 ∈ Zp.
When R ′ = ∅, we set

H = E(1, χ) − E1(1, χ)G((1+ T)u
−1 − 1)

L(χω)

L(χ, 0)
+ E(χ, 1)W(39)

where

W :=
L(χω)

L(χ−1ω)

L(χ−1)

L(χ, 0)
∈ Frac(Λ)

has specialisation

νk(W) =
Lp(χω, 1− k)

Lp(χ−1ω, 1− k)

L(χ−1, 0)

L(χ, 0)

for every k ∈ Zp with Lp(χ
−1ω, 1− k) ̸= 0.
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We require that W has no pole at weight 1, which happens if

ordπW = ran(χ) − ran(χ
−1) < 0

where π is an uniformiser of the discrete valuation ring Λ(1). We choose π to be

T/ logu for computational convenience. And,

ran = ran(χ) := ords=0 Lp(χω, s)

If we swap χ for χ−1, then we end up inverting W. Hence, when W has a pole at

k = 1, we can assume W has a zero at k = 1 and instead show the conjecture for

χ−1. We can therefore assume that ordπW ≥ 0 and subdivide the case R ′ = ∅ into

further two cases:

Case-2: ν1(W) ̸= 0: Here, we must prove Rp(χ) = Lan(χ),
Case-3: ν1(W) = 0: Here, we must show that Rp(χ) = Lan(χ) = 0 and Rp(χ

−1) =

Lan(χ−1)
Now that we have our semi-cusp forms, we will just record a theorem proved in

DDP that demonstrates how to get a cusp form.

Theorem 61. There exists a Hecke operator t in the Hecke algebra T̃(1) such

that F = t · e ·H is a cuspidal Λ-adic form lying in S0(η, χ)(1).



CHAPTER 5

Hida Algebra Homomorphism

1. 1+ ϵ specialisation

Let ν1+ϵ : Λ(1) 7→ Ẽ := E[ϵ]/(ϵ2) be the map f 7→ f(1) + f ′(1)ϵ.

Recall that ϕ(1)(Tq) = ν1(c(q, TqH)) = TqH1 = TqE1(1, χS) = 1 + χS(q) for

q ̸= p. The observation is that H1+ϵ = ν1+ϵ(H) can also be written as sum of two

characters that lift 1, χ.

Definition 62. Let ψ1 : GF → Ẽ be a character unramified outside p and defined by

ψ1(q) = 1+ v1κcyc(q)ϵ ∀ q ∤ p

ψ1(q) = 1 q | p

Let ψ2 : GF → Ẽ be a character unramified outside S and defined by

ψ2(q) = χ(q)(1+ u1κcyc(q)ϵ ∀ q ∤ p

ψ2(q) = 0 q ∈ S

Theorem 63. [DDP11, Proposition 3.6] The Fourier coefficients of H1+ϵ satisfy

(1) c(1,H1+ϵ) = 1

(2) c(q, H1+ϵ) = ψ1(q) +ψ2(q) if q ̸= p

(3) c(p, H1+ϵ) = 1+w
′
1(ϵ)

And, H1+ϵ is a simultaneuous eigenform for the Hecke operators Tq for q ̸∈ S and

Uq for q ∈ S. The eigenvalues are given by the above calculated coefficients.

This lets us define a Λ(1) homomorphism

ϕ1+ϵ : T̃⊗Λ(1) → Ẽ, T 7→ ν1+ϵ(c(OF, TH))

In fact, ϕ1+ϵ factors through the quotient T ⊗ Λ(1) of T̃ ⊗ Λ(1) as there is a Hecke

operator T such that TH = F.

Proof. We shall prove this theorem in the case when p is not the only prime

in H above p (the other case is done in [DDP11, Proposition 3.6]). Let m be an

integral ideal of OF and write m = n⟨p⟩ with gcd(n, ⟨p⟩) = 1. Note that

c(m, E1+ϵ(1, χ)) =
∑
r|n

χ(r)(1+ ϵκcyc(r))(40)

χ(r) = χS(r) if p ∤ r(41)

39
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χ(r) = 0 if p | r(42)

Therefore,

(43) c(m, E1(1, χ)) − c(m, E1(1, χS)) =
∑
r|m

(χ(r) − χS(r)) = ordp(n)
∑
r|n

χ(r)

Using the same arguments as in [DDP11] we can show that

c(m, H1+ϵ) =

∑
r|n

ψ1(n/r)ψ2(r)

 (1+w ′
1ϵ)

ordp(n)

The result follows from this. □

As w(k) = u(k)Lan(χ, k) we have w ′
1 = u1Lan(χ). Thus, we have the following

Theorem 64. [DDP11, Theorem 3.7] Assuming that Leopoldt’s conjecture holds

for F, and the assumptions

(1) If |Sp| > 1, then the conjecture is true for all χ.

(2) If |Sp| = 1 and furthermore

(44) ordk=1(Lan(χ, k) + Lan(χ
−1, k)) = ordk=1Lan(χ

−1, k)

Then there exists a Λ(1)-homomorphism

ϕ1+ϵ : T(1) → Ẽ

such that

ϕ1+ϵ(Tq) = ψ1(q) +ψ2(q) q ̸∈ S(45)

ϕ1+ϵ(Uq) = ψ1(q) q ∈ R(46)

ϕ1+ϵ(Up) = 1+ u1Lan(χ)ϵ(47)

2. General rank, case 1: R ′ ̸= ∅

As seen in the previous section, in a small neighbourhood of 1, the form F

remains an eigenform. This allows us to define a Λ-algebra homomorphism

ϕ : T→ E[T ]/⟨T 2⟩

sending t to ν1(t · F).
In the general case, one attempt could have been to construct a Λ-algebra ho-

momorphism

T→ E[T ]/T r+1

It so turns out that the cuspidal form F no longer remains an eigenform modulo

T r+1. Ventullo’s crucial insight was to simply study the orbit of this form F modulo

T r+1 under the Hecke action. We will see that the orbit is not one dimensional
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over Λ/T r+1 but it is finite dimensional and can be explicitly obtained. This is the

objective of this chapter and the following few sections.

Any Hida family is determined exclusively by its Fourier expansion, there is a

canonical homomorphism:

c : S0(η, χ)(1) → ∏
a⊆OF

Λ(1)(48)

X 7→ (c(a,X))a⊆OF
(49)

Let H be the image of F under the reduction of c modulo πran+1. This is finitely

generated module over Λ(1)/π
ran+1 = E[π]/πran+1, and hence we have a canonical

Λ-algebra homomorphism:

ϕ : T→ EndE[π]/πran+1 H

Now, we come to the construction of the alluded Hecke algebra homomorphism.

Theorem 65. Suppose R ′ is not empty. Then, there exists a Λ-algebra homo-

morphism

ϕ : T→W1 = E[π, ϵ1, . . . , ϵr]/⟨πran+1, ϵ2i , ϵiπ, ϵ1 · · · ϵr + (−1)ranL∗
an(χ)π

ran⟩

where

L∗
an :=

L
(ran)
p (χ, 0)

ran!L(χR ′ , 0)

such that

Tl 7→ 1+ χε(l) l ∤ np,

Ul 7→ 1 l | n or l ∈ R ′,

Upi 7→ 1+ ϵi R = {p1, . . . , pr}

Here, ε is the Λ-adic cyclotomic character that we have not yet introduced. We

will do that here. The Λ-adic cyclotomic character

ε : GF → Λ×

satisfies νk(ε(σ)) = ⟨εcyc(σ)⟩k−1 for any k ∈ Zp where εcyc is the usual cyclotomic

character. Thus, explicitly, the Λ-adic cyclotomic character is given by

ε(σ) = (1+ T)logp⟨εcyc(σ)/ logp u⟩

2.1. Proof of theorem 65. The second term in F is

F ′ = E1(1, χR ′)G((1+ T)u−1 − 1)
L(χω)

L(χR ′ , 0)
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Suppose

L(χω) = πran(a0 + a1T + · · ·+ anTn + · · · )(50)

As L(χω,uk−1 − 1) = Lp(χω, 1 − k) for positive integers in the neighbourhood of

1 ∈ Zp, we have L(χω,u−s−1) = Lp(χω, s) for s ∈ Zp. Now, using this information,

we can compute eq. (50) at u−s − 1 to get

Lp(χω, s) = L(χω,u−s − 1) =

(
u−s − 1

logu

)ran (
a0 + a1

(
u−s − 1

logu

)
+ · · ·+ an

(
u−s − 1

logu

)n
+ · · ·

)(51)

Differentiating gives

L(ran)p (χω, s) = (−1)ranran!

(
a0 + a1

(
u−s − 1

logu

)
+ · · ·+ an

(
u−s − 1

logu

)n
+ · · ·

)(52)

+( terms containing the factor (u−s − 1))

And, evaluating at s = 0 gives

L(ran)p (χω, s) = (−1)ranran!a0(53)

Using eq. (53), the form F ′ modulo πran+1 becomes

F ′ ≡ E1(1, χR ′) · 1 · πran · a0 ·
1

L(χR ′ , 0)
(mod πran+1)

≡ E1(1, χR ′) · πran · (−1)
ranL

(ran)
p (χω, 0)

ran!
· 1

L(χR ′ , 0)
(mod πran+1)

≡ (−1)ranE1(1, χR ′)L∗
anπ

ran (mod πran+1)(54)

Thus, the Hecke orbit of F ′ depends on the Hecke orbit of E1(1, χR ′). In partic-

ular, if t ∈ T̃, then

tF ′ ≡ (−1)ranν1(t)(E1(1, χR ′))L∗
anπ

ran (mod πran+1)

Thus, we should analyse the action of the Hecke operators on the Eisenstein series

E1(1, χR ′). We recall that

TlE1(1, χR ′) = (1+ χ(l))E1(1, χR ′) l ∤ np,(55)

UlE1(1, χR ′) = E1(1, χR ′) l | n or l ∈ R ′(56)

whereas for p ∈ R we have

UpE1(1, χR ′) = E1(1, χR ′) + E1(1, χR ′∪{p})



2. GENERAL RANK, CASE 1: R′ ̸= ∅ 43

In general, if R ′ ⊆ J ⊆ Sp and p ∈ Sp we have

(57) (Up − 1)E1(1, χJ) =

E1(1, χJ∪{p}) p ̸∈ J,
0 p ∈ J

When l ∤ np, we know that TlE(1, χ) = (1+ χε(l))E(1, χ). From the definition of

the Λ-adic cyclotomic character we also have

1+ χε(l) ≡ 1+ χ(l) (mod π)

Hence,

TlH = (1+ χε(l))H l ∤ np,(58)

UlH = H l | n or l ∈ R ′(59)

By the commutativity of Hecke operators, the same is true for F and its Hecke

orbit H. Hence, the homomorphism ϕ takes

ϕ(Tl) = (1+ χε(l)) l ∤ np,(60)

ϕ(Ul) = 1 l | n or l ∈ R ′(61)

Next, UpiE(1, χ) = E(1, χ) OR Upi −1 annihilates E(1, χ). From eq. (54), we see

that π annihilates the image of (Upi − 1)F in H. And, from eq. (54), eq. (57) we see

that the image of (Upi − 1)
2F is 0 in H. If we let ϕ(Upi) = 1 + ϵi, then from our

observations, it is clear that

ϵ2i = 0,π · ϵi = 0 for all i(62)

This almost finishes the search for the relations. We just have the last one. For

that, observe that

r∏
i=1

(Upi − 1)F ≡ t · e((−1)ranE1(1, χS)L∗
anπ

ran) (mod πran+1)(63)

≡ t · e((−1)ranL∗
anπ

ranE(1, χ)) (mod πran+1)(64)

= (−1)ranL∗
anπ

ranF (mod πran+1)(65)

Thus, we have the relation

ϵ1 · · · ϵr + (−1)ranL∗
an(χ)π

ran

in EndE[π]/πran+1 H. Combining these relations, we get a surjective Λ(1) algebra

homomorphism

W1 → ϕ(T)⊗ E
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To finish the proof we need to show that this map is injective as well. That is done

by counting dimensions both sides. Notice that W1 has dimension 2r + ran − 1 as

E-vector space, generated by 1, π, π2, . . . , πran−1 and the products
∏

j∈J ϵj for all non-

empty subsets J ⊆ R. We can show that that the corresponding 1, π1, π2, . . . , πran−1

and the products
∏

j∈J ϵj are linearly independent in the endomormphism ring

EndE[π]/πran+1 H. To show this, it is enough to show that the images of F under

the operators are linearly independent. As F, πF, π2F, . . . , πran−1F vanish to differ-

ent orders less than ran, the coefficients of these terms in any linear combination

have to be zero. And, modulo πran+1 the forms
∏

j∈J ϵjF are some multiple of

E1(1, χR ′∪J)π
ran which we know are linearly independent. This finishes the proof.

3. General rank, case 2 : R ′ = ∅, ν1(W) = 0

We assume that W has a zero at k = 1, i.e. ran(χ) > ran(χ
−1). Let s :=

ran(χ), t := ran(χ
−1). Then, we can say that

ordπW = s− t ≥ 1

We define the Λ(1)-algebra

E[π, ϵ1, . . . , ϵr, y]/IW2

where

IW2
= ⟨πs, yt+1, y(π− y), πtW− yt, ϵ2i , ϵiπ, ϵiy, ϵ1 · · · ϵr + (−1)sL∗

an(χ)π
s⟩

Theorem 66. We have a Λ-algebra homomorphism

ϕ : T→W2

such that

Tl 7→ 1+ χε(l) +
(χ(l) − 1)(1− ε(l))

π
y l ∤ np,

Ul 7→ 1+
1− ε(l)

π
y l | n or l ∈ R ′,

Upi 7→ 1+ ϵi R = {p1, . . . , pr}

3.1. Proof of theorem 66. Like in the previous proof, we will first construct

a homomorphism

W2 → ϕ(T)⊗ E
and show that the above homomorphism is in fact an isomorphism.

First, fix a prime q ∤ np such that χ(q) ̸= 1. Define the Hecke operator

Y :=
Tq − 1− χε(q)

(1− ε(q))(χ(q) − 1)/π
∈ T̃



3. GENERAL RANK, CASE 2 : R′ = ∅, ν1(W) = 0 45

It can be shown that

π(Tq − 1− χε(q))H =

[
π(Tq − 1− χε(q))E(1, χ) − (Tq − 1− χε(q))E1(1, χ)G((1+ T)u

−1 − 1)
L(χω)

L(χ, 0)

+ π(Tq − 1− χε(q))E(χ, 1)]

≡ π [(1+ χε(q))E(1, χ) − (1+ χε(q))E(1, χ)] − 0+ π [(χ(q) + ε(q))E(χ, 1)

− (1+ χε(q))E(χ, 1) ]W (mod πran+1)

≡ π(χ(q) − 1)(1− ε(q))E(χ, 1)W (mod πran+1)

(66)

Hence,

YH ≡ πE(χ, 1)W (mod πran+1)(67)

Therefore,

TlH = (1+ χε(l))E(1, χ) − (1+ χ(l))E1(1, χ)G
L(χω)

L(χ, 0)
+ (χ(l) + ε(l))E(χ, 1)W

≡ (1+ χε(l))E(1, χ) − (1+ χε(l))E1(1, χ)G
L(χω)

L(χ, 0)
+ (χ(l) + ε(l))E(χ, 1)W

+ (1+ χε(l))E(χ, 1)W− (1+ χε(l))E(χ, 1) (mod πran+1)

≡ (1+ χε(l))H + (χ(l) − 1)(1− ε(l))E(χ, 1)W (mod πran+1)

≡ (1+ χε(l))H +
(χ(l) − 1)(1− ε(l))

π
YH (mod πran+1)(68)

As a consequence,

ϕ(Tl) = 1+ χε(l) +
(χ(l) − 1)(1− ε(l))

π
Y

for l ∤ np.
Similarly, as χ(l) = 0 for l | n, we have

UlF =

(
1+

ε(l) − 1

π
Y

)
F (mod πran+1)

and

ϕ(Ul) = 1+
ε(l) − 1

π
Y

Again, as TqE(χ, 1) = (χ(q) + ε(q))E(χ, 1) we have

YE(χ, 1) = πE(χ, 1)(69)

Also,

πYE(χ, 1) ≡ π2E(χ, 1) ≡ Y2E(χ, 1) (mod πran+1)

Yran+1E(χ, 1) ≡ 0 (mod πran+1)
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Consequently, we get

(πY − Y2)F ≡ 0 (mod πran+1)(70)

Yran+1F ≡ 0 (mod πran+1)(71)

Now, using eq. (70)

πranWF ≡ πranWE(1, χ) + πranE(χ, 1)W2 (mod πran+1)(72)

Yran(W+ 1)F ≡ (W+ 1)πranE(χ, 1)W (mod πran+1)(73)

(πranW− Yran(W+ 1))F ≡ 0 (mod πran+1)(74)

Where the last equation holds because E(1, χ) ≡ E(χ, 1) ≡ E1(1, χS) (mod π).

Next, we move on to the tricky operators Up where p ∈ R. Like in the proof in

Case 1, we have

(Up − 1)
2F ≡ π(Up − 1)F ≡ 0 (mod πran+1)(75)

(Up − 1)YF ≡ 0 (mod πran+1)(76)

For the last relation in IW2
, we again compute

r∏
i=1

(Upi − 1)H ≡ (−1)ran+1E1(1, χS)L∗
an(χ)π

ran (mod πran+1)

≡ (−1)ran+1L∗
an(χ)(π

ran − Yran)H (mod πran+1)

which eventually gives us

r∏
i=1

(Upi − 1)F ≡ (−1)ran+1L∗
an(χ)(π

ran − Yran)H (mod πran+1)(77)

We also note that

Yt+1H ≡ πt+1E(χ, 1)W ≡ 0 (mod πran+1)(78)

Yt+1F ≡ 0 (mod πran+1)(79)

where the first equivalence holds due to our assumption on s, t at the beginning of

this section.

Also,

YtH ≡ πtE(χ, 1)W ≡ πtWH (mod πran+1)(80)

which implies

(πtW− Yt)F ≡ 0 (mod πran+1)(81)

The calculations from eq. (69) to eq. (81) gives a surjective mapW3 → ϕ(T⊗E).
Our objective again is to show that this map in an injection as well. For this it
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suffices to show that the forms

{πiF}si=0 ∪ {YiF}ti=1 ∪

{∏
j∈J

(Upj − 1)F

}
∅̸=J⊂R

are linearly independent over E modulo πran+1.

Take a linear combination of the forms stated above that sums to zero. We

wish to the show that the coefficients appearing in the combination are all zero.

Notice that F, πF, . . . , πs−tF have different orders of vanishing less than πran and

so they must be linearly independent i.e., their coefficients in the combination must

vanish. Next, πs−t+iF and YiF have the same orders of vanishing for i = 1, . . . , t−1

and their leading terms are linearly independent. Hence, their coefficients are zero.

It remains to show that πsF and
{∏

j∈J(Upj − 1)F
}

∅≠J⊂R
are linearly independent

over E. But, upto non-zero scalars, these forms are congruent to πranE1(1, χJ) for

∅ ≠ J ⊂ R. We have already seen in Case 1 that such forms are linearly independent.

This completes the proof in the second case.

4. General rank, case 3 : R ′ = ∅, ν1(W) ̸= 0

We define the Λ(1)-algebra

E[π, ϵ1, . . . , ϵr, y]/IW3

where

IW3
= ⟨πran+1, yran+1, y(π−y), πranW−yran(W+1), ϵ2i , ϵiπ, ϵiy, ϵ1 · · · ϵr+(−1)sL∗

an(χ)(π
ran−yran)⟩

Theorem 67. We have a Λ-algebra homomorphism

ϕ : T→W3

such that

Tl 7→ 1+ χε(l) +
(χ(l) − 1)(1− ε(l))

π
y l ∤ np,

Ul 7→ 1+
1− ε(l)

π
y l | n or l ∈ R ′,

Upi 7→ 1+ ϵi R = {p1, . . . , pr}

4.1. Proof of theorem 67. In the proof of Case 2, the computations till

eq. (77) do not use the assumption on W and hence, we easily obtain a surjective

Λ(1)-algebra homomorphism

W3 → ϕ(T)⊗ E
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Again, we want to show that the above homomorphism is an injection. To show

that it suffices to prove that the forms

{πiF}ran−1i=0 ∪ {YiF}rani=1 ∪

{∏
j∈J

(Upj − 1)F

}
∅̸=J⊂R

are linearly independent over E modulo πran+1. The proof of this is where we use

ν1(W) ̸= 0 crucially. The proof is same as in the previous case, and is given in

details in [DKV18, pp. 854-855].



CHAPTER 6

Construction of cohomology class

1. Galois Representations attached to Hida families

Recall the Λ-algebra homomorphism

ϕ : T→W

where W =Wi, i = 1, 2, 3. If we let mW to be the maximal ideal of W, and m ⊆ T

the kernel of the composition

T
ϕ−−→W →W/mW ≃ E

Let T(m) be the localisation of T at the prime ideal m. As T(m) is Noetherian and

reduced, the total ring of fractions of the local ring T(m) embeds in L isomorphic to

the product of fields

(82) L =

t∏
i=1

LHi

where LHi
is a finite extension of Frac(Λ) and corresponds to a cuspidal Hida eigen-

family Hi.

For an integral ideal a ⊆ OF, the normalised Fourier coefficient c(a,Hi) is the

image in LHi
of the Hecke operator Ta. These coefficients generate a Λ-subalgebra of

LHi
which we shall denote by ΛHi

. The image of T(m) under the injection T(m) → L

is the localisation of ΛHi
at a height one prime ideal mHi

lying above ⟨T⟩ ⊆ Λ. The
explicit form of the homomorphism ϕ gives us the following equivalences:

c(l,Hi) ≡ 1+ χ(l) (mod mHi
) for l ∤ np(83)

c(l,Hi) ≡ 1 (mod mHi
) for l | np(84)

Note that the congruences eq. (83) hold for all Hi appearing in the product

eq. (82). We will use the following result of Hida and Wiles in our construction for

cohomology class.

Remark 68 (Notation). For purposes of notational convenience, I will label Hi with

the index i. So, Hi will be denoted by i and LHi
= Li,mHi

= mi and so on.

Theorem 69. There exists a continuous irreducible Galois representation

ρi : GF → GL2(Li)

49
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where Li is endowed with the Λ-adic topology (i.e. the topology generated by the

maximal ideal ⟨πE, T⟩ of Λ, where πE is the uniformiser of E) satisfying the following

conditions:

(1) ρG is unramified outside np,

(2) for primes l ∤ np, the characteristic polynomial of ρH(Frobl) is

charpoly(ρi(Frobl))(x) = x
2 − c(l,Hi)x+ χε(l)(85)

(3) for all p | p, the representation has a very specific form. More precisely,

ρH|Gp ∼

(
χεη−1i,p ∗
0 ηi,p

)
(86)

where ηi,p : Gp → Λ×
H is unramified and ηi,p(rec(ϖ

−1)) = c(p,Hi). Here,

ϖ ∈ F×p is the uniformiser and rec : F×p → Gabp is the local Artin reciprocity

map.

Notice that locally we have a basis that makes the representation upper triangu-

lar as seen in eq. (86). And, globally we have a basis that makes the representation

diagonal. Our construction of cohomology class will crucially depend on the inter-

play between these local and global basis. Mazur calls this the Ribet wrench, and

also observes that this method fails if the global and local basis are the same. Thus,

we need to find the appropriate basis first that does not agree with the local bases.

And, we must also do this simultaneously for the His. To this effect, we will record

the following technical lemma which is proven in [DKV18]

Lemma 70. [[DKV18, Lemma 4.3, pp. 860]] Let vi,p ∈ L2i be a vector in the

representation ρi that is an eigenvector for ρi(Gp). Then, there exists a τ ∈ GF such
that χ(τ) ̸= 1 and such that vi,p is not an eigenvector for ρi(Gp) for all i = 1, . . . , t

and p ∈ R.

Next, let T be the image of T in T(m). The product of the Galois representations

ρi for i = 1, . . . , t gives a continuous Galois representation

ρ : GF → GL2(L)

satisfying

(1) ρ is unramified outside np,

(2) for primes l ∤ np, the characteristic polynomial of ρH(Frobl) is

charpoly(ρ(Frobl))(x) = x
2 − Tlx+ χε(l)(87)

where Tl is the image of Tl in T.
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(3) for all p | p, the representation has a very specific form. More precisely,

ρ|Gp ∼

(
χεη−1p ∗
0 ηp

)
(88)

where ηp : Gp → Λ×
H is unramified and ηp(rec(ϖ

−1)) = Ul. Here, ϖ ∈ F×p is

the uniformiser and rec : F×p → Gabp is the local Artin reciprocity map.

Let Tm denote the completion of T(m) at its maximal ideal. As a consequence of

Hensel’s lemma, we can find distinct λ1, λ2 ∈ Tm and a basis such that

ρ(τ) =

(
λ1

λ2

)
(89)

for the τ obtained in lemma 70.

For σ ∈ GF, let

ρ(σ) =

(
a(σ) b(σ)

c(σ) d(σ)

)
(90)

Using the eq. (87), 1 + χ(l) ≡ Tl (mod m) and Cebotarev’s density theorem

(we can apply because T and m ⊆ T are finitely generated Λ-modules and as ρ is

continuous they are closed in the Λ-adic topology) it follows that

(91) a(σ) + d(σ) ∈ T ⊆ Tm

and

(92) a(σ) + d(σ) ≡ 1+ χ(σ) (mod mT)

If m̂ = mTm be the maximal ideal of Tm. From eq. (89) we have

a(τ) = λ1 ≡ 1 (mod m̂)(93)

d(τ) = λ2 ≡ χ(τ) (mod m̂)(94)

We also have

1+ χ(σ)χ(τ) ≡ a(στ) + d(στ) (mod m̂)(95)

≡ a(σ) + d(σ)χ(τ) (mod m̂)(96)

where eq. (95) follows from eq. (92) and eq. (96) follows from eq. (93),eq. (94).

From eq. (92) and eq. (96) we can conclude that

a(σ) ≡ 1 (mod m̂)(97)

d(σ) ≡ χ(σ) (mod m̂)(98)

Next, let B be the Tm-submodule generated by b(σ) where σ ∈ GF. B is in fact a

finitely generated Tm-module. Indeed, suppose B0 is the T(m)-submodule generated
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by b(σ) where σ ∈ GF. As ρ is continuous and GF is compact, B0 must be compact,

hence finitely generated as T(m)-submodule. And as a result, C is finitely generated

as Tm-submodule. Define the E-vector space

B := B/m̂B

For σ, σ ′ ∈ GF, we have the relation:

b(σσ ′) = a(σ)b(σ ′) + b(σ)d(σ ′)(99)

= b(σ ′) + χ(σ ′)b(σ)(100)

Define the function

κ(σ) := b(σ)χ−1(σ)(101)

where b is the image of b in B. Then, from eq. (99)

κ(σσ ′) = χ−1(σ)b(σ ′)χ−1(b ′) + b(σ)χ−1(σ)(102)

= σ · κ(σ ′) + κ(σ)(103)

From eq. (102), it is clear that [κ] is an element of H1(GF, B(χ
−1)).

This finishes our construction of the cohomology class. In the next section, we

will study it in more detail and see what happens in the local bases.

2. Local behaviour of the cohomology class

Recall the cohomology class [κ] ∈ H1(GF, B(χ−1)) defined via

κ(σ) = b(σ)χ−1(b)

For each prime p | p, there is a basis for which the matrix ρ|Gp has the form

eq. (88). Let

(
Ap Bp

Cp Dp

)
∈ GL2(Lm) be the change of basis matrix that transforms

the mentioned local basis to the global basis as constructed in eq. (89). More

concretely, this means(
a(σ) b(σ)

c(σ) d(σ)

)(
Ap Bp

Cp Dp

)
=

(
Ap Bp

Cp Dp

)(
χεη−1p ∗
0 ηp

)
(104)

for all σ ∈ GF. The first observation is that

Lemma 71. The elements Ap, Cp are invertible.

Proof. This is because of the choice of τ we have made in lemma 70. □

On comparing the top left entry on both sides, we obtain

Apa(σ) + b(σ)Cp = Apχεη
−1
p
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b(σ) =
Ap

Cp

(
χεη−1p − a(σ)

)
(105)

for all σ ∈ GF.

Lemma 72. The cohomology class [κ] ∈ H1(GF, B(χ−1)) is unramified outside R.

Proof. [DKV18, Lemma 4.7, pp. 864] □

Lemma 73. Let R = {p1, . . . , pr}. We have

B ⊆ Ap1

Cp1

m̂ + · · ·+ Apr

Cpr

m̂

Proof. [DKV18, Lemma 4.9, pp. 865] □



CHAPTER 7

Gross-Stark regulator computation

1. The homomorphism ϕm

W is a local Artin ring which is complete with respect to its maximal ideal mW

as mran+1
W = 0. Hence, the homomorphism ϕ : T → W extends canonically to a

surjective homomorphism

ϕm : Tm →W

In Cases 2 and 3, we define a modified cyclotomic character which Dasgupta-

Kakde-Ventullo call the Λ-adic cyclotomic character in the variable y:

εy : GF →W×

to be sending σinGF to

εy(σ) =

∞∑
i=0

aiy
i(106)

= 1+
ε(σ) − 1

π
y(107)

where ais are defined as
∑∞

i=0 aiπ
i := ε(σ), and a0 = 1.

As y is nilpotent, the sum is in fact finite. And, the second relation holds using

the relation πy = y2 in W2,W3.

Define επ−y similarly and also define two homomorphisms

ψ1, ψ2 : GF →W×

via

ψ1(σ) =

1 Case 1

εy(σ) Case 2, 3

and

ψ2(σ) =

χε(σ) Case 1

χεπ−y Case 2, 3

The main result of this section that will come handy when computing the regu-

lator is

Proposition 74. We have

ϕm(a(σ)) = ψ1(σ)(108)

54
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ϕm(d(σ)) = ψ2(σ)(109)

Proof. For l ∤ np, we have

ϕm(Tl) = ψ1(Frobl) +ψ2(Frobl)(110)

This implies

ϕm(a(σ) + d(σ)) = ψ1(σ) +ψ2(σ)(111)

for all σ ∈ GF. Using the relation πy = y2 we have

(π− y)2 = π2 − y2

(π− y)3 = π3 − y3

(π− y)2 = π4 − y4

...

And thus for all σ ∈ GF, we have

επ−y(σ) = ε(σ) + 1− εy(σ)

= ε(σ) −
ε(σ) − 1

π
y

εy(σ)επ−y(σ) =
1

π2
[πε(σ) − y(ε(σ) − 1)] [π+ y(ε(σ) − 1)]

=
1

π2

[
π2ε(σ) − y2(ε(σ) − 1) + y2ε(σ)(ε(σ) − 1) − y2(ε(σ) − 1)2

]
=
1

π2

[
π2ε(σ) − y2ε(σ) + y2 + y2ε(σ)2 − y2ε(σ) − y2ε(σ)2 − y2 + 2y2ε(σ)

]
=
1

π2
· π2ε(σ)

= ε(σ)(112)

And thus,

ψ1ψ2 = χε(113)

Using the fact that ψ1 ≡ 1 (mod mW) and ψ2 ≡ χ (mod mW), and

ϕm(charpoly(ρ(σ))(x)) = (x−ψ1(σ))(x−ψ2(σ))(114)

which follows from eq. (113), eq. (111), we have

ϕm(λ1) = ψ1(τ)(115)

ϕm(λ2) = ψ2(τ)(116)

In eq. (111), put στ instead of σ to get

ϕm(a(σ))ψ1(τ) + ϕm(d(σ))ψ2(τ)
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= ψ1(στ) +ψ2(στ)(117)

From eq. (111) and eq. (117), we obtain our conclusion. □

2. Proof of Lan(χ) = Rp(χ) for Cases 1, 2 and 3

This section just follows the paper [DKV18]. If not stated otherwise, pi will be

replaced by just the index i, i.e., if there was supposed to be subscript pi, we shall

just use the subscript i.

Recall that we had u1, . . . , ur an E-basis of Uχ. As a result of ?? and lemma 72,

we have
r∑
i=1

respi κ(uj) = 0 in B(118)

for j = 1, . . . , r, and κ is the cohomology class constructed in previous chapter. As

uj ∈ Uχ, it can be written as

uj =
∑
k

yjk ⊗ ejk(119)

where yjk ∈ OH[1/p]
× and ejk ∈ E. This is can be done for each j. For each

i = 1, . . . , r, let y
(i)
jk ∈ Gpi such that reci(yjk) = y

(i)
jk . Noting that χ(Gpi) = 1, it

follows from definition that

resi κ(uj) = b(σij)(120)

where

σij =
∑
k

ejky
(i)
jk ∈ E[Gpi ]

Hence, the orthogonality relation in eq. (118) becomes (using 120)

r∑
i=1

b(σij) ∈ m̂B for each j = 1, . . . , r(121)

Using eq. (105) we have

b(σij) =
∑
k

ejk ·
Ai

Ci

(
εη−1i (y

(i)
jk ) − a(y

(i)
jk )
)

(122)

If we let I the kernel of the homomorphism ϕm : Tm →W, then we have

η−1i (y
(i)
jk ) = U

oi(yjk)
pi ≡ 1+ oi(yjk)(Upi − 1) (mod I)

ε(y
(i)
jk ) ≡ 1+ ℓi(yjk)π (mod π2)(123)

a(y
(i)
jk ) ≡ 1+ a

′
i(yjk) (mod ⟨m̂2, I⟩)(124)
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where a ′(yjk) ∈ m̂ is an element such that

ϕm(a
′
i(yjk)) =

0 Case 1

ℓi(yjk)y Cases 2, 3

Next,

εη−1i (y
(i)
jk ) − a(y

(i)
jk ) ≡ ℓi(yjk)π+ oi(yjk)(Upi − 1) − a

′
i(yjk) (mod ⟨m̂2, I⟩)(125)

Thus, eq. (122) becomes

b(σij) =
∑
k

ejk ·
Ai

Ci
(ℓi(yjk)π+ oi(yjk)(Upi − 1) − a

′
i(yjk) +mij)(126)

for some mij ∈ ⟨m̂2, I⟩. Next, from 73 we have∑
k

ejk ·
Ai

Ci
(ℓi(yjk)π+ oi(yjk)(Upi − 1) − a

′
i(yjk) +mij) = 0

after changing mij by elements of m̂ is necessary. Consider the matrix(
Ai

Ci
(ℓi(uj)π+ oi(uj)(Upi − 1) − a

′
i(uj) +mij)

)
i,j=1,...,r

The rows of the matrix above sum to zero and hence its determinant must be

zero. If we apply the homomorphism ϕm to the determinant relation of the above

matrix, we get the following equations in the ring W.

det(ℓi(uj)π+ oi(uj)ϵi + nij) = 0 for Case 1(127)

det(ℓi(uj)(π− y) + oi(uj)ϵi + nij) = 0 for Cases 2, 3(128)

with nij ∈ m2
W.

Now, let us finish the proof in Case 1 using the relations in W1. Notice the

following relations modulo mr
W:

0 ≡ det(ℓi(uj)π+ oi(uj)ϵi) (mod mr+1
W )

≡ det(ℓi(uj))π
r + det(oi(uj))ϵ1 · · · ϵr (mod mr+1

W )(129)

≡ det(ℓi(uj))π
r + det(oi(uj))(−1)

ran+1L∗
an(χ)π

ran (mod mr+1
W )(130)

Finally, we can break it into two cases:

r = ran: Then, Lan(χ) = L∗
an(χ) and as πr ̸∈ mr+1

W , we conclude that

Lan = (−1)r det(ℓi(uj))/ det(oi(uj)) = Rp(χ)

as we wanted.
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ran > r: Here, π
ran ≡ 0 (mod mr+1

W ), and hence eq. (129) becomes det(ℓi(uj)) = 0

because of which Rp(χ) = 0. As Lan(χ) = 0 as well in this case, we again

have the equality.

This concludes the proof.

3. Proof of Lan(χ−1) = Rp(χ
−1) for Case 3

Here, we mostly repeat the arguments from previous chapter and previous sec-

tions of this chapter. While constructing the cohomology class, we were looking at

the top right entry and hence the b-cocycle, here instead we will look at the bottom

right entry and get the c-cocyle.

Let C be the finitely generate Tm submodule generated by the elements c(σ) for

σ ∈ GF. As before, let C = C/m̂C. For σ, σ ′ ∈ GF we have the equation

c(σσ ′) = c(σ)a(σ) + d(σ)c(σ ′)

As a consequence, we can define the cohomology class

[κ̃] ∈ H1(GF, C(χ))

as before. When we analyse the local behaviour we get the relation :

c(σ) =
Cp

Ap

(
χεη−1p (σ) − d(σ)

)
for σ ∈ Gp.

It can be shown that

C ⊆ Cp1

Ap1

h + · · ·+ Apr

Cpr

h

where h = ϕ−1
m (yW)

As ϕm(d(σ)) = χεπ−y(σ) we have

ϕm(χεη
−1
i (σ) − d(σ)) = εy − 1+ oi(σ)ϵi

for σ ∈ Gpi and recp(σ) = σ. Like in the previous section, we have the relation

det(ℓi(uj)y+ oi(uj)ϵi + nij) = 0(131)

with nij ∈ mWh. Arguing as before, we have the congruence

0 ≡ det(ℓi(uj))y
r + det(oi(uj))(−1)

ran+1L∗
an(χ)π

ran (mod mWh
r)(132)

In the ring W3, there is a relation

yt = Wπt = (−1)s−t
L∗(χ)

L∗(χ−1)
πs

which allows us to rewrite eq. (132) as

0 ≡ det(ℓi(uj))y
r + det(oi(uj))(−1)

t+1L∗
an(χ

−1)yt (mod mWh
r)(133)
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The congruence yields an equality in the one dimensional E-vector space hr/mWh
r.

Again,

t = r: L∗
an(χ) = Lan(χ) and we eq. (133) becomes

0 = det(ℓi(uj)) + det(oi(uj))(−1)
r+1Lan(χ−1)

t > r: yt ∈ mWh
r and eq. (133) gives det(ℓi(uj)) = 0 because of which Rp(χ

−1) = 0.

As Lan(χ−1) = 0 as well in this case, we again have the equality.



APPENDIX A

Dedekind Zeta Function

Let k be a number field, S a finite set of places of k containing the infinite places

S∞ of k. Then, define the Dedekind zeta function for Re(s) > 1 by

(134) ζk(s) = ζk,S∞(s) =
∏
p̸∈S∞

(1− Np−s)−1 =
∑

0 ̸=a⊴Ok

1

Nas

and more generally

(135) ζk,S(s) =
∏
p̸∈S

(1− Np−s)−1 =
∑

0 ̸=a⊴Ok

gcd(a,p)=1 ∀ p∈S

1

Nas

The function above can be meromorphically continued to all of s ∈ C. The

functional equation is discussed in Appendix F.
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APPENDIX B

Abelian L-functions

References for this section is [Tat84, §1], [Mar77].

Let k be a number field, S a finite set of places of k containing the infinite places

S∞ of k. Let χ be a complex valued function on the ideals of the ring of integers of

k. Define the L-function formally by

(136) L(s, χ) =
∏
p̸∈S∞

(1− χ(p)Np−s)−1 =
∑

0 ̸=a⊴Ok

χ(a)

Nas

If χ satisfies the asymptotic condition χ(a) = O(Naσ) for σ ∈ R, then L(s, χ)
converges for Re(s) > 1+ σ.

For example, when k = Q, we have the Dirichlet characters χ : (Z/fZ)× → C×

for f ∈ Z≥2. The character can be extended to all of Z by letting χ(a) = 0 if

gcd(a, f) ̸= 1. For a general k, fix an integral ideal f of k and consider the exact

sequence

0 O×
f k×f If Cf 0

where

O×
f = {x ∈ O×

k : x ≡ 1 mod f}

k×f = {x ∈ k× : x ≡ 1 mod f}

If = {a ∈ I : a ≡ 1 mod f}

and Cf the quotient of If by the principal ideals generated by elements of k×f . We

want to get a character of If through a character of Cf

For k = Q, we have Cf = (Z/fZ)×/{±1} which does not really correspond to the

Dirichlet characters we started with. We thus have to take into consideration the

question of sign: if T is a set of real places of k, we denote by k×f,T (resp. O×
f,T ) the

elements of k×f (resp. O×
f ) that are positive for all places of T . Let Cf,T denote the

quotient of If by the image of k×f,T . This is a finite group. To summarise, we have
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the following commutative diagram whose rows and columns are exact:

0

0 O×
T k×T I CT 0

0 O×
f,T k×f,T If Cf,T 0

0 0 0 (O/f)×/Im(O×
T )

0

A homomorphism χ : Cf,T → C× is seen as a function on I by letting χ(a) = 0 if

a is not coprime to f. We thus have

L(s, χ) :=
∏
p∤f

(1− χ(p)Np−s)−1

The above product converges for Re(s) > 1.

We say that χ : CfT → C× is primitive (where fT is the conductor of χ), if for all

f ′|f and T ′ ⊆ T , there exists a χ ′ such that the following diagram commutes:

CfT Cf ′
T ′

C×

χ χ ′

implying f ′ = f, T ′ = T . By abuse of language, from now on we say L(s, χ) is

primitive if χ is. Consider a function L(s, χ) non-primitive if it removes a few Euler

factors.

We know how to analytically continue L(s, χ) to the entire complex plane with

a functional equation, cf. Appendix F. If χ = 1, L(s, χ) is equal to ζK or one of ζk,S
depending on whether f = 1 or not. If χ ̸= 1, we know that L(s, χ) is holomorphic

and L(1, χ) ̸= 0.
In terms of ideles The χs constructed correspond to continuous homomorphisms

A×
k → S1 of finite order and trivial on principal ideals of k×. In effect, an idele

(xv) ∈ A×
k corresponds to an ideal If generated by the components xp for p | f.

We are not going to, in these notes, concern ourselves with the more general quasi-

characters of A×
k .
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The theory of ray class fields establishes, for all pair (f, T) as before, the exis-

tence of an unique abelian extension Kf,T of k- namely ray class field f - such that

the following three conditions are satisfied:

(1) A prime ideal p of k ramifies in Kf,T if and only if p | f.

Notation: If K/k is an abelian extension with a finite Galois group G,

p a place of k that does not ramify in K/k and P a place of K that divides

p, then we note that

(
p

K/k

)
is an unique element of GP ⊆ G (see below)

whose reduction modulo P is the automorphism x 7→ xNp on the residue

field of P. As G is abelian, the above depends only on p.

(2) The map p 7→ (
p

Kf,T/k

)
induces an isomorphism-namely the Artin reci-

procity :

ψf : Cf,T
∼−→ Gal(Kf,T/k)

(3) The norm NKf,T /ka of each ideal a ̸= 0 from Kf,T prime to f is a principal

ideal generated by an element of k×f,T .

Moreover, for each finite abelian extension K/k, the Galois group G, there exists

a pair (f, T) chosen minimally (called the conductor of ) K/k such that

(1) K ⊆ Kf,T ;
(2) The surjection ψK/k : Cf,T

ψf−→ Gal(Kf,T/k) → G is induced from the map

p 7→ (
p

K/k

)
;

(3) The kernel kerψK/k forms the class of representatives of the norms of the

ideals of K.

By Ĝ we denote the characters (of dimension 1) of the group G. Thanks to ψK/k,

the elements of Ĝ can be interpreted as a character of the type envisaged in earlier

section. The conductor of χ ∈ Ĝ is then that of the fixed field of kerχ ⊆ G. By

writing primitive functions everywhere, we prove the following decomposition ([see

CF10, p. 217]; [Wei95, pp. XIII–10]):

(137) ζK(s) =
∏
χ∈Ĝ

L(s, χ) = ζK(s)
∏
χ ̸=1

L(s, χ)



APPENDIX C

Linear representations of finite groups

The reference for this section is [Ser77]

Suppose G is a group of finite order g and E a field of characteristic 0. An

E-linear representation of G is a homomorphism ρ : G→ GL(V), for a vector space

V over E. This amounts to providing V with an E[G]-module structure. We can

therefore simply talk about the representation V of G.

The character of the representation ρ is a function χ = χρ : G → E, such that

the trace equals that of action of the automorphism ρ(x) (x ∈ G) on E. This is

a class function (i.e., χ(xyx−1) = χ(y) ∀ x, y ∈ G) with χ(1) = dimV . It takes

its values on a cyclotomic extension of Q contained in E. We denote by a 7→ a∗

the automorphism of the cyclotomic extension of Q induced by the substitution

ζ 7→ ζ−1 of roots of unity. For E ⊆ C, we find that a∗ = ā (complex conjugation).

Likewise, we write χ∗ (or χ̄, if E ⊆ C) for the character obtained by conjugating the

values of χ. Two representations of G are isomorphic if and only if they have the

same character. This follows from the orthogonality relations between irreducible

characters of G (= characters of representations with no proper G-stable subspace),

relative to the following scalar product :

⟨χ1, χ2⟩G =
1

g

∑
σ∈G

χ1(σ)χ
∗
2(σ) =

1

g

∑
σ∈G

χ1(σ)χ2(σ
−1)

We note that 1G : G→ E is just the trivial character corresponding to the dimension

of dimension 1. A virtual character of G in E is a combination of Z-linear characters
of G attached to the representations of G in E.

Properties of ⟨·, ·⟩G
Here, the arguments of the scalar product will be that of virtual characters.

(1) ⟨χ1, χ2⟩G ∈ Z
(2) ⟨χ1 + χ2, χ3⟩G = ⟨χ1, χ3⟩G + ⟨χ2, χ3⟩G

⟨χ1, χ2⟩G = ⟨χ2, χ1⟩G = ⟨χ1χ∗2, 1G⟩G
(3) Frobenius Reciprocity

Suppose H is a subgroup of G of order h; ψ a virtual character of H

and χ a virtual character of G. So,

⟨ψ, χ|H⟩H = ⟨IndGHψ, χ⟩G
64
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Here, for σ ∈ G, IndGHψ(σ) =
1

h

∑
τ∈G,τ−1στ∈H

ψ(τ−1στ)

It is the function induced on G by ψ. If ψ is the character of the rep-

resentation H → GL(W), then Indψ is that of the induced representation

E[G]⊗E[H]W of G.

Given an E[G]-module V and a subgroup H of G, we let VH = {x ∈ V : σx =

x ∀σ ∈ H}. If W is also an E[G]-module, the action of G on V ⊗E W is given

by σ(x ⊗ y) = σx ⊗ σy and on HomE(V,W) by (σf)(x) = σ(f(σ−1x)) so that

HomE[G](V,W) = HomE(V,W)G. If V (resp. W) is a representation of G over E of the

character χ (resp. ψ), then χψ is a character of V⊗EW while the one of HomE(V,W)

is χ∗ψ. In fact, we have V⊗EW ≃ HomE(V
∗,W) where V∗ = HomE(V, E) is the dual

of V . According to what we have said, the conjugate character χ∗ of the character

χ is attached to the action of G on V .

From now onwards, the group G given will be the Galois group of the finite

extension K/k of global fields. We will always assume the action of G is on the left.

However, we sometimes write aσ instead of σa ( for σ ∈ G,a ∈ K). In these cases,

the reader should be accustomed to the formula aστ = (atau)σ for σ, τ ∈ G,a ∈ K.
If w is a place of K, Gw is used to denote the decomposition group of w with

respect to K/k, i.e., Gw = {σ ∈ G : σw = w}. If w is non-archimedean, Iw is used

to denote the inertia group of w, formed by the elements of Gw that induces trivial

automorphism on the residual extension. So, if v is the restriction of w in k, the

Galois group of the residual extension of w/v is identified with Gw/Iw and one notes

that σw ∈ Gw/Iw is the Frobenius automorphism (elevating to a power of Nv on the

residue field of w). σw generates Gw/Iw.

If w is archimedean, we sometimes write σw for the unique generator of Gw. In

fact, in the case Gw is of order 2 or 1 depending on whether w is complex extension

of a real place or not.



APPENDIX D

Definition and properties of Artin L-functions

Suppose K/k is a finite Galois extension of number fields with Galois group G.

Let χ : G → C be a character of a complex representation G → GL(V). With the

notations as in the previous section, for each place P of K, the element σP ∈ GP/IP

acts on V IP . Note that, for Re(s) > 1,

(138) L(s, V) =
∏
p

det(1− σPNp−s|V IP)−1

where p denotes a finite place of k and for each p, P is a place of K dividing p

(arbitrarily chosen). The σP given are conjugates of each other, thus the value

of the ”characteristic polynomial” of σP appearing as a member in the product is

independent of the choice of P.

The same argument shows that L(s, V) remains unchanged if change V by an

isomorphic representation. We can therefore write L(s, χ) without ambiguity instead

of L(s, V). In fact, here is an explicit formula due to Artin which depends only on

χ :

(139) log L(s, χ) =
∑
p

∞∑
n=1

χ(σnP)

n ·Npns

where χ(σnP) =
1

|IP|

∑
τ∈σnP

χ(τ)

Formal properties:

Once we have shown analytic continuation of L(s, χ), the following properties

become valid for all s ∈ C.

(1) Additivity

L(s, χ1 + χ2) = L(s, χ1) + L(s, χ2)

(2) Induction
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K

k ′

k

H For a subgroup H of G and a character χ of H, denote by

Indχ the character of G induced from χ. So,

L(s, IndGH χ) = L(s, χ)

(3) Inflation

K

k ′

k

H

G ′

For a quotient G ′ = G/H where H is a distinct subgroup

of G and χ a character of G ′, denote by Inflχ the character

G→ G/H
χ−→ C. So,

L(s, InflGG/Hχ) = L(s, χ)

(4) If χ(1) = 1, that is to say that V is of dimension 1, the homomorphism

χ : G→ C× factorises through the abelianisation Gab of G.



APPENDIX E

A theorem of Brauer and Artin’s conjecture

A character of G is termed monomial if it is induced by a character of degree

1 of a subgroup of G. The theorem of Brauer affirms that all characters of G are

integral linear combination of irreducible monomial characters.

Thanks to our discussion in last section, we can deduce that each Artin L-function

can be written in the form ∏
i

L(s,ψi)
ni

with ni ∈ Z and ψi is a character of degree ψi(1) = 1 of a suitable subgroup Hi of

G. On applying the induction property, we can pass to a quotient Hi of kerψi, so

that ψi becomes a character of cyclic group.

Let χ be a character of a complex representation of G. One cannot always

impose on the integers ni to be positive. Nevertheless, this decomposition tells us

that L(s, χ) has an analytic continuation to a meromorphic function defined on the

entire complex plane.

The conjecture due to Artin says that L(s, χ) is an entire function, if χ does not

contain the trivial character 1G ([Mar77, pp. I–5]).
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APPENDIX F

Functional equation

The main references for this section is [Wei95][God95a][God95b]

Let χ be a character of a complex representation of G = Gal(K/k).

To begin, complete L(s, χ) with the gamma factors corresponding to the infinite

places of k. Let

ΓR(s) = π
−s/2Γ(

s

2
)

ΓC(s) = ΓR(s)ΓR(s+ 1) = 2 · (2π)−sΓ(s)
For each infinite place v of k, choose a place w of K lying above v. If Gw has order

2 (cf. 1.4.4), let χ− be a non-trivial character. In any case, put χ+ = ⊮Gw and write

χ|Gw = n+(w)χ+ + n−(w)χ−

So we have n+(w) = dimV and n−(w) = CodimVGw . Using this decomposition, the

local factor LV does not depend on our choice of w, and is defined by the additivity

from the formulas :


LV(s, χ+) = ΓC(s) if V is complex

LV(s, χ+) = ΓR(s) if V is real

LV(s, χ−) = ΓR(s+ 1) if V is real

If r2 is the number of complex places of k, we set

a1 = a1(χ) =
∑

v real dimV
Gw

a2 = a2(χ) =
∑

v|∞ CodimVGw =
∑

v real CodimV
Gw

n = [k : Q] = 1
χ(1)

(a1(χ) + a2(χ) + 2r2χ(1))

More explicitly,

(140)
∏
v|∞ LV(s, χ) = 2

r2χ(1)(1−s)p−
a2
2
− s

2
nχ(1)Γ(s)r2χ(1)Γ(s/2)a1Γ

(
s+ 1

2

)a2
Note that we have ai(χ) = ai(χ) for i = 1, 2, . . .

If p is a finite place of k, choose a place P of K such that P|p. If IP = G0 ⊇
G1 ⊇ G2 ⊇ · · · be the sequence of ramification groups of P/p ([Ser79, ch. IV]). We

denote by gi the cardinality of Gi and put

(141) f(χ, p) =

∞∑
i=0

gi

g0
CodimVGi
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This number does not depend on the choice of P and we can show that it is a

rational integer ([Ser79, see VI-2]). As we trivially have f(χ, p) = 0 if p does not

ramify in K/k, we can define the Artin conductor of χ by

(142) f(χ) =
∏
p

pf(χ,p)

where p denotes all the finite places (prime ideals) of k

We put, with the notations as before:

(143) Λ(s, χ) = {|dk|
χ(1)Nf(χ)}s/2

∏
v|∞ LV(s, χ)L(s, χ)

where |dk| ∈ Q is the value of the absolute discriminant of k over Q; Nf(χ) > 0 the

absolute norm of f(χ); and for a real positive α and z ∈ C, we put (here and then)

αz = exp(z logα) with logα ∈ R.
So, the functional equation of L(s, χ) can be written as

(144) Λ(1− s, χ) =W(χ)Λ(s, χ)

with a constant W(χ) ∈ C× of modulus 1.

The constant W(χ)-named ”Artin’s Wurzelzahl” is written as

(145) W(χ) =W∞(χ)τ(χ)(Nf(χ))−1/2

where W∞(χ) =
∏
v|∞ i

CodimVGw
= i−a2(χ) and the complex constants τ(χ) are charac-

terised by the following formalism :

(1) τ(χ1 + χ2) = τ(χ1)τ(χ2)

(2) τ(IndGH(χ)) = τ(χ)
(
(Nk/QD(k ′/k))1/2im(k ′/k)

)χ(1)
K

k ′

k

H where D(k ′/k) is the discriminant ideal of k ′ on k and

m(k ′/k) = #{v ′ : v ′|∞ : v ′ is a place of k ′, Gv ′(k
′/k) ̸=

{1}}

(3) If χ is of dimension 1, we interpret accordingly as a Dirichlet character of

k, so τ(χ) is a Gauss sum involved in the functional equation of the abelian

L-function (see [MaD], II-2 for the explicit local formulas).

Note that ([Mar77]) we have W∞(χ) = W∞(χ) and f(χ) = f(χ). Finally, we

will rewrite the explicit functional equation by using the following identity ([Mar77,
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p. 49]):

(146) W(χ) =
Nf(χ)1/2

τ(χ)W∞(χ)

The sign of the discriminant dk ∈ Q is (−1)r2 . We put

√
dk = i

r2 |dk|
1/2 ∈ C

With all the notations, here is a explicit version of the functional equation :

(147) L(1− s, χ) =

2r2χ(1)
i(a1+r2χ(1))

τ(χ)
√
dk

χ(1)π
1/2nχ(1)

(
Γ(s)
Γ(1−s)

)r2χ(1) ( Γ(s/2)
Γ((1−s)/2)

)a1(
Γ((1+s)/2)
Γ((2−s)/2)

)a2
BsL(s, χ)

where B is a non-zero positive real.

Let us write c(χ) (resp. c1(χ)) for the first non-zero coefficient in the Laurent

series expansion of L(s, χ) (resp. L(s, χ)) at s = 0 (resp. s = 1) and let r1(χ) be the

multiplicity of L(s, χ) at s = 1. Letting s → 0 in equation for L(1 − s, χ), we can

finally obtain (recall that Γ(1/2) = π1/2 and that Γ has a simple pole with residue 1

at s = 0):

(148)
c1(χ)

c(χ)
= (−1)r12r2χ(1)+a1(χ)

(πi)a2(χ)+r2χ(1)

τ(χ)
√
dk

χ(1)
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