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Abstract

Zero sum problems in finite abelian groups are studied using some constants like
the Davenport constant D(G), Erdös-Ginzberg-Ziv constant s(G), and the η-invariant. A
major portion of the report is concerning results for rank-2 groups and some discussion
on certain rank-3 and higher rank groups.

Contents

1 Introduction 2
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 General observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Ramsey-like Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of Finite Abelian Groups . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Constants of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Structure Theorem of Finite Abelian Groups 5

3 Davenport’s Constant and Some Results 10
3.1 Rank-1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Rank-2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Erdös-Ginzberg-Ziv Constant 14
4.1 Erdös- Ginzberg-Theorem (Rank-1) . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Rank-2 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2.1 Proof by Reiher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Structural insights that contain the proof due to Reiher . . . . . . . . 21

5 More results on Davenport constant and other constants 22
5.1 Davenport’s constant (D(G)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Results for C2 ⊕C2 ⊕C2n . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 Results for C3 ⊕C3 ⊕C3d . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 η(G) and s(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 Certain results on η(G) and s(G) . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 EGZ constant for groups of the form Cr2 ⊕Cn . . . . . . . . . . . . . . 29

1



6 Future reading prospects 29
The entire text is concerned with only finite abelian groups. So in case it is not clear,
safely assume that ’G’ is a finite abelian group

1 Introduction

Zero-sum problems are problems relating to the structure of finite Abelian Groups.

1.1 Problem statement

Question 1.1.
Let (G,+) be a finite Abelian Group. Then we ask if given a finite collection of elements
say g1, g2, . . . gn does there exist a certain sub-collection whose element sums to 0.

For the case of Infinite Groups we need to modify the statement a little bit. But, I will not
be studying this.

1.2 General observations

Definition. • If we allow repetitions of gi we simply call the collection sequences
and subsequences. Note that sequences are also called ”multisets”.

• If we do not allow repetitions of gi we call the collection sets and subsets. Note
that they are also called ”square-free sequences”.

Lemma 1.2.
Consider a (G,+). Then for sufficiently large n, the sequence g1, g2, . . . gn certainly con-
tains a subsequence gj1 , gj2 , . . . gjk whose entries sum to zero.

Proof. Assume n = |G|2. Then there is an element g ∈ (G,+) which appears n times and so
we can simply take the subcollection to be n copies of that g. Since, g |G| = 0 ∀ g ∈ G we have
proved our claim.

• It is easy to see that if the sequence is too big then every sequence g1, g2, . . . gn will have
a subsequence whose elements sum to zero.

• What we usually do is put some kind of conditions on the length of the sequence (or
cardinality of the set) and check if that is sufficient to get the desired subsequence.
That is to say we want Ramsey-like results.

• We want to find a best possible n given (G,+).
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Remark 1.3. • We see that n in the above is quite large and we would like to decrease
it, the least such k for which the property is satisfied is known as the ”Davenport
constant” denoted by D(G).

• The similar concept can also be expressed in terms of set and the smallest such k
in that case is called the ”Olson constant” and denoted by Ol(G).

1.3 Ramsey-like Problems

Given any large structure we would like to study the unavoidable regularity in these large
structures. This is the essence of Ramsey theory. We want to know if given a large collection
can we partition it into finite number of classes such that there is always one such class
which contains all the elements of some regularity condition. In addition to this we would
also like to know how big can these ”large” structures be and also try to put find some
minimum condition on the smaller classes to satisfy the regularity condition.

1.4 Structure of Finite Abelian Groups

The Finite Abelian Groups have a well-defined structure that makes them easy to study. We
have listed that below.

Theorem 1.4 (Fundamental Theorem of Finite Abelian Groups).
Consider (G,+) to be a Finite Abelian group. Then there exists integers n1,n2, . . .nr such
that 1 < n1|n2| . . . |nr and

(G,+) � (Z/n1Z⊕Z/n2Z⊕ . . .⊕Z/nrZ,+)

Some notation needs to fixed now.

Definition. • The integer r in the above theorem is called the rank of the group and
denoted by r(G).

• The integer nr in the above theorem is called the exponent of the group and de-
noted by exp(G).

Remark 1.5.
We note that g exp(G) = 0 ∀ g ∈ G and exp(G) is the smallest such integer with such a
property.
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Theorem 1.6.
Consider (G,+) to be a Finite Abelian group. Then there are prime powers q1,q2, . . .qs
such that

(G,+) � (Z/q1Z⊕Z/q2Z⊕ . . .⊕Z/qsZ,+)

Here, qis are uniquely determined upto ordering.

Note 1.7.
We have two notions of rank, so we try to find relation between r(G) and denoted by
r∗(G)

We now formulate the structure theorem in a way that might be helpful later on.

Theorem 1.8 (Reformulation of FToFAG).
Consider (G,+) to be a Finite Abelian group. Then there exists integers e1, e2, . . . er such
that 1 < ord(e1)|ord(e2)| . . . |ord(er) and

(G,+) �< e1 > ⊕ < e2 > ⊕ . . .⊕ < er >

Moreover the orders are uniquely obtained.

Definition.
The set of elements e1, e2, . . . er is called the basis of G.

We also try to define a notion of independence of elements in the following way

Definition.
A family f1, f2, . . . fs over G is said to be independent if given

s∑
i

aifi = 0

where ai ∈Z implies aifi = 0 ∀ i.

Generally, any set of independent generators is called a basis.

Remark 1.9. • The cardinality of the basis set is not unique in general.

– r(G) is the smallest size of the basis.

– r∗(G) is the largest size of the basis.

• We have r(G) = r∗(G) iff exp(G) is a prime power and we call G a p-group.
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1.5 Constants of Interest

Definition (of zero-sum constant).
Let (G,+) be a finite abelian group. Let I ⊂N\{0}. Let sI (G) ∈N∪ {∞} be the smallest
integer such that each sequence g1, g2, . . . gk with k ≥ sI (G) has a subsequence with sum
of elements equal to 0 and length in I .

Lemma 1.10.
sI (G) is finite iff I contains a multiple of exp(G).

Proof.

Note 1.11. 1. s
N\{0}(G) =D(G) called Davenport’s constant.

2. sexp(G)(G) = s(G) called the Erdös - Ginzberg - Ziv constant.

3. s|G|(G) = zs(G) called the zero-sum constant.

4. s1,...,exp(G)(G) = η(G) called the η- invariant.

5. sexp(G)N(G) = so(G)

2 Structure Theorem of Finite Abelian Groups

Before stating the structure theorem I want to establish a a proposition which will be used
extensively.

Proposition 2.1 (Recognition theorem of direct products).
Let G be a group with subgroups H,K that satisfy the following properties:

1. H and K are normal in G.

2. H ∩K = {e}

Then we have HK �H ×K

Proof. Let us first prove that the elements in HK commute. Let h ∈ H and k ∈ K and H is
normal in K . Then we can say that

hkh−1 = k1for some k1 ∈ K
hkh−1k−1 ∈ K
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And

kh−1k−1 = h1 for some h1 ∈H
hkh−1k−1 ∈H

But from condition 2 we see that hkh−1k−1 = e ⇒ hk = kh. Also to note is that since H,K .
Now that we have shown this we define a homomorphism

φ :HK →H ×K

such that hk 7→ (h,k). Every element of HK can be written as hk where h ∈H and k ∈ K . The
mapping is well defined; say h1k1 = h2k2 then we have h1h

−1
2 = k1k

−1
2 but property 2 tells us

that both sides are e. Thus we have h1 = h2 and k1 = k2.
Now say φ(h1k1h2k2) = φ(h1h2k1k2) = (h1h2, k1k2) = (h1, k1)(k1, k2) = φ(h1, k1)φ(h2, k2)

Well definedness gives us into and onto. And thus it is an isomorphism.

Proposition 2.2 (Reformulation of recognition theorem).
Let H1,H2, . . . ,Hn be normal subgroups of G and assume that

1. G =H1H2 . . .Hn

2. For each i = 1,2, . . .n we have Hi ∩ (H1 . . .Hi−1 ∩Hi+1 ∩ . . .Hn) = {e}

Then G �H1 ×H2 × . . .×Hn

Theorem 2.3 (Primary Decomposition theorem).
Let G be a finite abelian group of order n and the prime factorisation of n is n =
pα1

1 p
α2
2 . . .p

αk
k and let Ai be the Sylow-pi subgroup of G for i = 1,2, . . .n. Then

G = A1 ×A2 × . . .Ak

Proof. Note that any subgroup of an abelian group is normal.

If x ∈ G is an element whose order is a power of pi then Sylow’s theorem says that x is in
Sylow-pi subgroup. But there is only 1 Sylow-pi subgroup since all are conjugates. ⇒ x ∈ Ai

Now, let x ∈ G be an arbitrary element. Then o(x)|n so let

o(x) = pβ1
1 p

β2
2 . . .p

βk
k

Then set

q1 =
o(x)

p
β1
1

,q2 =
o(x)

p
β2
2

, · · ·qk =
o(x)

p
βk
k

Clearly qis are coprime. So we have integers a1, a2, . . . ak ∈Z such that

a1q1 + a2q2 + . . . akqk = 1
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.

Then we have

x1 = xa1q1+a2q2+...akqk

x = xa1q1 · xa2q2 · · ·xakqk

Moreover (xaiqi )p
βi
i = e and thus xaiqi ∈ Ai for i = 1,2, . . . , k

So we can say that G = A1A2 . . .Ak.

Now say a1 ∈ A1 and a1 = a2a3 · · ·ak for ai ∈ Ai . We also know that ord(ai) = pαii .

Then we have a
p
α2
2 ···p

αk
k

1 = e but pis are all distinct therefore we have a1 = e.

Now we can use the recognition theorem of direct products (proposition 2.2) to get the
primary decomposition.

Now that we have proved that, we can focus on groups of prime power orders only.

Lemma 2.4.
Let G be a finite abelian p-group of order pn. Then there exists powers β1,β2, . . . ,βk with
β1 ≥ β2 ≥ · · · ≥ βk and β1 + β2 + · · ·+ βk = n such that

G � Zpβ1 ×Zpβ2 × · · ·Zpβk

Proof. Proof by induction. If n = 1 then G =< e > × < g > and we are done.

Let g1 ∈ G be an element of maximal order pβ1 , then β1 ≤m. Let Z1 =< g1 >.

A/Z1 =< g2Z1 > × < g3Z1 > ×· · ·× < gkZ1 >

where | < giZ1 > | = pβi and β2 ≥ β3 ≥ · · · ≥ βk. Since g1 has maximal order ∴ g1 ≥ g2

Fix i where 2 ≤ i ≤ r and consider < giZ1 >≤ A/Z1, |giZ1| = pβi

We have gp
βi

i ∈ Z1⇒ g
pβi
i = gri1 for some ri

Then we have (gri1 )p
β1−βi = gp

β1

i = e

This says that pβ1 |ripβ1−βi ⇒ pβi |ri ⇒ pβidi = ri

So gp
βi

i = gri1 = gβidi1 .
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Now we set xi = gig
−di
1 which gives us xp

βi

i = gp
βi

i g
−dipβi
1 = e and this is the smallest exponent

that has this property.

So we can produce x2,x3, . . . ,xk ∈ G such that ord(xi) = pβi . Set Zi =< xi > for 2 ≤ i ≤ k
To complete the proof it suffices to prove the following:

1. G = Z1Z2 · · ·Zk

2. For each i = 1,2, . . .n we have Zi ∩ (Z1 . . .Zi−1 ∩Zi+1 ∩ . . .Zn) = {e}

Let g ∈ G then from the decomposition obtained above we can get powers e1, . . . ek such that

(g2Z1)e2(g3Z1)e3 · · · (gkZ1)ek = gZ1

(g2Z1)e2(g3Z1)e3 · · · (gkZ1)ek = gg ′ for some g ′ ∈ Z1

We also know that gi = xig
di
1 , thus we have

xe22 · x
e3
3 · · ·x

ek
k = gh

for some h ∈ Z1. We can thus choose e1 to be such that xe11 = h−1. So finally we have

g = xe11 x
e2
2 x

e3
3 · · ·x

ek
k

and thus (1) is proven.

To prove (2) it suffices to prove that, if xe11 x
e2
2 · · ·x

ek
k = e then pβi |ei for i = 1,2, . . . , k

Again note that xi = gig
−di
1 ,

y(ge11 g
e2
2 · · ·g

ek
k ) = e for y ∈ Z1

(ge11 g
e2
2 · · ·g

ek
k )Z1 = eZ1

This gives us pβi |ei for i = 2,3, . . . , k but this means xe11 = e ⇒ pβ1 |e1. Thus we are done by
proposition 2.2

Lemma 2.5.
If G is a cyclic group of order pα and φ : G → G be a map such that g 7→ gp, then we
claim that |G| = p|Gp|.

Proof. G =< x > and ord(x) = pα

G = {1,x,x2, · · · ,xpα−1}

Gp = {gp|g ∈ G}. Clearly, Gp ≤ G
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Ker(φ) = {g ∈ G | gp = e}

If g ∈ G⇒ g = xk, and consider xkp = e⇒ pα |kp

This means k = pα−1λ for λ = 0,1,2, . . . ,p − 1

Thus we have obtained Ker(φ) = {x(pα−1)λ : λ = 0,1, . . . ,p − 1} and |Ker(φ)| = p.

The first isomorphism theorem gives us |G/Ker(φ)| = |Gp| ⇒ |G| = p|Gp|.

Lemma 2.6 (Uniqueness).
Suppose G is a finite abelian group of prime power orders. If G = H1 ×H2 × · · · ×Hr =
K1 × K2 × · · · × Ks where Hi ,Kj are nontrivial cyclic subgroups with |H1| ≤ · · · ≤ |Hr | ,
|K1| ≤ · · · ≤ |Ks| then r = s and |Hi | = |Ki |.

Proof. Proceed by induction.

Suppose |G| = p, then it is fine.

Assume statement is true for finite abelian groups of order less than |G|.

Now,
Gp =Hp

1 ×H
p
2 × · · · ×H

p
r ′

where r ′ is the largest integer i such that |Hi | > p

And,
Gp = Kp1 ×K

p
2 × · · · ×K

p
s′

where s′ is the largest integer i such that |Ki | > p

Now, |Gp| < |G| and by induction hypothesis r ′ = s′,

And, |Hp
i | = |K

p
i | for all i = 1,2, . . . , r ′

But |Hi | = p|H
p
i | ⇒ |Hi | = |Ki | for i = 1,2, . . . , r ′ by lemma 2.5

All that remains to be proven is that the #Hi of order p = #Ki of order p.

|H1||H2| · · · |Hr ′ |pr−r
′
= |G| = |K1||K2| · · · |Ks′ |ps−s

′

And, r ′ = s′⇒ r = s and we are done.

Thus we have proved the Fundamental Theorem of Finite Abelian Groups
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3 Davenport’s Constant and Some Results

This section will do the following:

1. State what the constant means.

2. Find results in rank-1.

3. Find results in rank-2 (specifically in C2
p ).

4. Use some inductive argument to get the result in rank-2 (in Cm ⊕Cn with m|n).

Definition.
D(G) is the least positive integer such that all sequences over G of length D(G) has a
zero sum subsequence.

Let us fix some notation before we move forward.

• The sequence S will be denoted in the multiplicative form S =
l∏
i=1

gi .

• The sum of elements of S is denoted by σ (S).

• A subsequence of S is denoted by T | S.

Definition.

We also introduce another constant D∗(G) =
r∑
i=1

(ni − 1) + 1 where nis are obtained from

G = Cn1
⊕Cn2

⊕ · · · ⊕Cnr

3.1 Rank-1 results

A very trivial lower and upper bound on D(G) is as follows.

Theorem 3.1.
D∗(G) ≤ D(G) ≤ |G|

Proof. “first inequality”
G = Cn1

⊕Cn2
⊕ · · · ⊕Cnr and each Cni =< ei >. Consider the sequence

S = en1−1
1 · en2−1

2 · · ·enr−1
r

Thus we have found a sequence of length D∗(G) − 1 which is zero sum free therefore D(G)
must be atleast 1 more than this, that is

D(G) ≥ D∗(G)− 1 + 1 =D∗(G)
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“second inequality”

Consider the sequence S =
l∏
i=1

gi with l ≥ |G| and let Sk = g1g2 . . . gk where k = 1,2, . . . , l. If

σ (Sk) = 0 then we are done otherwise we can always find j < k such that σ (Sj) = σ (Sk)
(suppose all were distinct then there would be l distinct sums but only |G| distinct elements
in G). Consider σ (gj+1gj+2 · · ·gk) = σ (SkS

−1
j ) = σ (Sk) − σ (Sj) = 0 and thus we have found a

subsequence whose terms sum to zero. Either way we find a T | S such that σ (T ) = 0. Hence,
proved.

Corollary 3.2.
If G is cyclic then D(G) = |G|

3.2 Rank-2 results

Thus we have found Davenport constant for cyclic groups and now we move onto another
elementary group which are p-groups.

Theorem 3.3.
Let G = Cpe1 ⊕Cpe2 ⊕ · · · ⊕Cper be a finite abelian p-group. Then D∗(G) =D(G)

The proof of this theorem uses something called group ring which I will introduce. Also to
note is that for the sake of this proof we will consider the group operation to be multiplica-
tion and not addition.

Definition.
Let G be a finite abelian group written multiplicatively and R be a commutative ring
with 1. Now consider the formal sum where only finitely many terms are non-zero.

R[G] =


∑
g∈G

agg : ag ∈ R


If x,y ∈ R[G] such that x = y iff ag = bg ∀ g ∈ G.
Note thatG ⊂ R[G], 1 ∈ R[G]. If we define addition and multiplication then we are done.

x+ y =
∑
g∈G

(ag + bg)g

x · y =
∑
g∈G

(cgg) where cg =
∑

g1,g2∈G,g1g2=g

ag1
bg2
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Definition.
N k(S) = #{T | S : |T | = k,zero sum subsequence}

Lemma 3.4.
If |S | ≥ D∗(G) then

1−N 1(S) +N 2(S)− · · · (−1)kN k(S) ≡ 0 (mod p)

Lemma 3.5 (*).

[Ols69a] Let the sequence S =
l∏
i=1

gi be over G such that l ≥ D∗(G). Then

(1− g1)(1− g2) · · · (1− gl) ∈ pZ[G]

Proof. Suppose g ∈ G and g = uv then we can write 1− g = 1−uv = (1−u) +u(1− v).
G = Cpe1 ⊕Cpe2 ⊕ · · · ⊕Cper and let Cpei =< xi > ∀i = 1,2, · · · l.
For any g ∈ G we have g = xa1

1 · x
a2
2 · · ·x

ar
r .

1− g = 1− xa1
1 · x

a2
2 · · ·x

ar
r

= (1− x1) + x1(1− x1) + x2
1(1− x1) · · ·xa1−1

1 (1− x1)

+ xa1
1 (1− x2) + xa1

1 x2(1− x2) + xa1
1 x

2
2(1− x2) · · ·xa1

1 x
a2−1
2 (1− x2)

· · ·
· · ·

+ xa1
1 x

a2
2 · · ·x

ar−1
r−1 (1− xr) + xa1

1 x
a2
2 · · ·x

ar−1
r−1 xr(1− xr) + · · ·+ xa1

1 x
a2
2 · · ·x

ar−1
r (1− xr)

∈Z[G]

Now if we look at (1−g1)(1−g2) · · · (1−gl) =
∑
gJg where Jg = (1−x1)c1(1−x2)c2 · · · (1−xr)cr . A

crucial observation is that c1 + c2 + · · ·+ cr ≥ l ≥
r∑
i=1

(pei − 1).

This tells us that there must be a j such that cj ≥ pej .
Consider (1 − xj)cj = (1 − xj)p

ej
(1 − xj)cj−p

ej
= (1 − p · terms (−1)p

ej
)(group ring element). If

p = 2 then it becomes 2(group ring element) and if p is odd then also it becomes p(group
ring element). Therefore (1− xj)cj ∈ pZ[G] or equivalently

(1− g1)(1− g2) · · · (1− gl) ≡ 0 (mod p)

Proof of lemma 3.4. Let the sequence be S =
l∏
i=1

gi with l ≥ D∗(G).

Note that (1−g1)(1−g2) · · · (1−gl) =
∑
agg. The lemma 3.5 tells us that ag ≡ 0 (mod p)∀ g ∈ G.
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Now consider g = 1 and therefore look at a1. First let us rewrite the LHS

1−
l∑
i=1

gi +
∑
i<j

gigj − · · · (−1)lg1 · · ·gl

Combinatorially what it means is that we are trying to find elements in the sum such that
product of gis equal 1. The contribution for a1 can come from any of the terms in the above
sum and thus we are trying to find zero sum sequences in the above sum and thus we have
established the required relation.

Proof of theorem 3.3. Suppose that the sequence has length more than D∗(G) but it is zero-
free then we have 1 ≡ 0 (mod p) and therefore we get D(G) ≤ D∗(G) but we also know that
D(G) ≥ D∗(G) from theorem 3.1. Thus we have D(G) =D∗(G).

Corollary 3.6.
D(Crp) = r(p − 1) + 1

Conjecture 3.1.
D(Crn) = r(n− 1) + 1

Theorem 3.7 (Girard).
[Gir18] D(Crn) is asymptotically bounded by nr

Definition.
η(G) is the least positive integer l such that any given sequence S of length |S | ≥ l over
G satisfying N k(S) ≥ 1 for some 1 ≤ k ≤ exp(G)

Lemma 3.8.
η(G) = 3p−2 that is any sequence of length ≥ 3p−2 over G has a zero sum subsequence
of length at most p

Proof. Let S =
l∏
i=1

gi be over C2
p . We observe C2

p as a subgroup of C3
p such that the third

term is 0. Consider the new sequence T =
l∏
i=1

(gi ,1). We know that D(C3
p ) = 3p − 2 from

theorem 3.3 therefore we have a zero sum subsequence T ′ | T such that σ (T ′) = 0. This
means |T ′ | ≡ 0 (mod p) so |T ′ | = p,2p. If |T ′ | = p we are done. If |T ′ | = 2p, we know that
2p−1 =D(C2

p ) we will find a zero sum subsequence T ′′ of length less than 2p. So either this
subsequence or its complement in T ′ will have length less than p and we are done.
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Theorem 3.9 (Olson).
Let G = Cm ×Cn with m | n. Then D(G) =m+n− 1 =D∗(G)

Proof. Let p be the prime that divides both m,n then let m = pm1 and n = pn1. If n1 = 1 then
we have D(C2

p ) = 2p − 1. So we will assume that we have n1 ≥ 2.

Proof by induction.

Consider H ≤ Cm and K ≤ Cn with [H : Cm] = p = [K : Cn]

Now take Q =H ×K with |Q| =m1n1.

Let S =
l∏
i=1

gi be the sequence over G with l ≥m+n− 1

Take the quotient G/Q and consider the sequence T =
l∏
i=1

(gi +Q). Note that

1. G/Q � C2
p and D(C2

p ) = 2p−1 therefore we can find a zero sum sequence, call it T1 with
length at most p

2. m+n− 1 = p(m1 +n1 − 2) + 2p − 1

Now throw this away and look at the rest, if the condition (2) is satisfied then we can again
throw away. Say we throw away T1,T2, · · ·Tu ∈Q. Then we have thrown away at mostm1+n1−
2 sequences and thus we are left with atleast 2p − 1 elements in T \{T1, · · · ,Tu} but D∗(C2

p ) =
2p − 1 therefore we can find another zero sum subsequence say T ′ ∈ Q. Now look at the
sequence S ′ = σ (T ′)σ (T1) · · ·σ (Tu) of length m1 + n1 − 1. Therefore by induction hypothesis
we find a subsequence in S ′ call it S ′′ such that σ (S ′′) = 0. So we have found zero sum
subsequence in S itself. And we are done.

4 Erdös-Ginzberg-Ziv Constant

This section will do the following:

1. State what the constant means.

2. Find results in rank-1.

3. Find results in rank-2 (specifically in C2
p ).

4. Use some inductive argument to get the result in rank-2 (in Cm ⊕Cn with m|n).

Recall what the constant is

Definition.
s(G is the smallest integer such that any sequence S over G such that |S | ≥ s(G) has a

14



zero sum subsequence of length equals exp(G)

4.1 Erdös- Ginzberg-Theorem (Rank-1)

Theorem 4.1 (Erdös-Ginzberg-Ziv Theorem).
A sequence of 2n− 1 elements over Cn has a zero sum subsequence of length n.

First consider the sequence 0n−1en−1 of length 2n − 2 where Cn =< e >. It is clearly n-
subsequence zerosum free and thus a trivial lower bound is s(G) ≥ 2n− 1.

Note 4.2.
We will see that it is enough to prove the statement for n = p where p is a prime.

Why is that ? Well, say it were true for a prime p and n = pm. The proof will be through
induction. Consider the sequence

S = g1g2 · · ·g2n−1

Since the result is true for prime p, for every sequence of length 2p−1 we have a subsequence
whose sum is divisible by p. Remove this zero sum p-subsequence from S, call it I1 and
continue removing in this manner. We find that we can remove I1, I2, . . . I2m−1, since after
we remove 2m− 2 p-subsequence we are left with atleast 2p − 1 elements which again has a
subsequence of length p divisible by p which can be removed. Now consider the sequence

T =
2m−1∏
i=1

(∑
j∈Ii gj

)
p

Now we see that T has 2m− 1 elements and therefore by the induction hypothesis we know
that there exists a subsequence of length m such that it is divisible by m. The corresponding
Ijs each of length p should then give us the relevant n-subset which is 0 modulo n.

So, it is enough to prove the following proposition:

Proposition 4.3.
For a prime p and a sequence of elements g1, g2, . . . , g2p−1 over Cp, there is an I ⊂ {1,2, . . .
2p − 1} such that |I | = p and

∑
i∈I gi ≡ 0 (mod p)

There are many proofs of this proposition and they can be found in [AD93]. I will present
two of them in this report.
Proof 1: Requires the following lemma

Lemma 4.4 (Cauchy-Davenport).
Let A and B be two non-empty subsets of Cp then |A+B| ≥min{p, |A|+ |B| − 1}

15



Proof. If

Now let’s prove the proposition.
If ∃ gi which appears atleast p times in the sequence S, then we can clearly find the zero
sum subsequence of length p. So let us assume that there is no gi which appears more than
p − 1 times. Rewrite the gi s in the following manner:

g1 g2 · · ·gp−1 g2p−1

h1 h2 · · ·hp−1

where gi , hi for all i = 1,2, . . . ,p − 1.
Applying Cauchy-Davenport lemma we have |{g1,h1}+ {g2,h2}| ≥ 3. Using the lemma repeat-

edly we get

∣∣∣∣∣∣∣
s∑
i=1

{gi ,hi}

∣∣∣∣∣∣∣ ≥ 2s − (s − 1) = s+ 1 for s = 1,2, . . . ,p − 1

In particular we have

∣∣∣∣∣∣∣
p−1∑
i=1

{gi ,hi}

∣∣∣∣∣∣∣ ≥ p
Equivalently we can say that

p−1∑
i=1

{gi ,hi} = Cp

This means that −g2p−1 ∈
p−1∑
i=1

{gi ,hi}, that is ∃ fi ∈ {gi ,hi}∀i = 1,2, . . . ,p − 1 such that

f1 + f2 + · · ·+ fp−1 = −g2p−1 and thus we have found the zero sum subsequence of length p.

Proof 2: Proof using Davenport’s constant.
Recall that for p-groups D(G) =D∗(G).
Consider the sequence S = g1, g2, . . . , g2p−1 over Cp.
Take the sequence T = (g1,1), (g2,1), . . . , (g2p−1,1) over Cp ⊕Cp. We know that D(C2

p ) = 2p − 1
and therefore we have a subsequence T ′ |T such that σ (T ′) = 0 but this means 1 + 1 + · · ·+ 1︸         ︷︷         ︸

k times

≡

0 (mod p) which is possible only when k is multiple of p and therefore k = p and we are
done.

So we have proved s(Cn) = 1. So we are done with rank 1 groups. Now we remember how
we moved to rank 2 for Davenport’s constant. We found results for C2

p and then used some
inductive argument to go to Cm ⊕Cn. This is exactly what we try to do here as well.

We consider the higher order analogue of EGZ theorem, that is we try to state a similar
result in Cn ⊕Cn.

4.2 Rank-2 results

16



Theorem 4.5 (Kemnitz conjecture).
Given a sequence S of 4n − 3 lattice points over G � Cn ⊕ Cn we claim that there is a
subsequence of length n whose elements sum to zero.
Equivalently s(G) = 4n− 3

Note that the sequence (0,0)n−1(1,0)n−1(0,1)n−1(1,1)n−1 of length 4n−4 does not have a zero
sum subsequence of length n and therefore s(G) ≥ 4n− 3.

Proposition 4.6.
It suffices to prove the theorem for n = p where p is prime.

Proof. Why is that ? Well, say it were true for a prime p and n = pm. The proof will be
through induction. Consider the sequence

S = g1g2 · · ·g4n−3

Since the result is true for prime p, for every sequence of length 4p−3 we have a subsequence
whose sum is divisible by p. Remove this zero sum p-subsequence from S, call it I1 and
continue removing in this manner. We find that we can remove I1, I2, . . . I4m−3, since after
we remove 4m− 4 p-subsequence we are left with atleast 4p − 3 elements which again has a
subsequence of length p divisible by p which can be removed. Now consider the sequence

T =
4m−3∏
i=1

(∑
j∈Ii gj

)
p

Now we see that T has 4m− 3 elements and therefore by the induction hypothesis we know
that there exists a subsequence of length m such that it is divisible by m. The corresponding
Ijs each of length p should then give us the relevant n-subset which is 0 modulo n.

Therefore effectively we just have to prove that

Proposition 4.7.
s(C2

p ) = 4p − 3

The lower bound is known. The first upper bound was due to [AD95] who proved that
s(G) ≤ 6p−5 for all primes p and s(G) ≤ 5p−2 for large p. An improvement was provided by
[Rón00] who proved that s(G) ≤ 4p − 2. So we were left with two possibilities s(G) = 4p − 3
or 4p − 2.
It was finally proved independently by Reiher [Rei07] and di Fiore. Further developments
on this is found in [GHZ16]

4.2.1 Proof by Reiher

Here I will lay out the proof given by Reiher in details.
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Note 4.8 (KEY IDEA).
Let G = C2

p and consider G ⊕Cp. We see that D∗(G ⊕Cp) = 3p − 2. If Cp =< e > where
ord(e) = n then we can write G⊕Cp = G⊕ < e >.

For a sequence S =
l∏
i=1

gi over G define φ(S) be the sequence over G⊕ < e > where φ :

G→ G⊕ < e > such that φ(g) = (g,e). That is φ(S =
l∏
i=1

gi ) = (g1, e)(g2, e) · · · (gl , e). Thus

any zero sum in φ(S) will have length ≡ 0 (mod p)

Lemma 4.9.
If |S | = 3p − 3, then

1−N p−1(S)−N p(S) +N 2p−1(S) +N 2p(S) ≡ 0 (mod p)

Proof. Consider the sequence 0S of length 3p − 2 over G and
Consider the sequence φ(0S) of length 3p − 2 over G⊕Cp and

Then the zero sums of even length =N 0(φ(0S)) +N 2p(φ(0S)) = 1 +N 2p−1(S) +N 2p(S)
Then the zero sums of odd length =N p(φ(0S)) =N p−1(S) +N p(S)

Now from lemma 3.4 we have the claim.

Lemma 4.10.
If |S | = 3p − 2 or |S | = 3p − 1, then

1−N p(S) +N 2p(S) ≡ 0 (mod p)

Proof. From lemma 3.4 it is trivially true.

Lemma 4.11.
If |S | = 3p − 2 or |S | = 3p − 1, then

N p(S) ≡ 0 (mod p)⇒N 2p(S) ≡ −1 (mod p)

Proof. A direct consequence of lemma 4.10.

Lemma 4.12 (Alon, Dubiner).
If S contains exactly 3p elements whose sum is ≡ 0 (mod p) then N p(S) > 0

18



Proof. Suppose N p(S) = 0 then it is easy to see that N p(S/g) = 0 for some arbitrary element
g | S. But we also observe that |S/g | = 3p − 1 and from lemma 4.11 we have N 2p(S/g) ≡ −1
(mod p)⇒ N 2p(S/g) > 0⇒ N 2p(S) > 0. We also note that σ (S) ≡ 0 (mod p) which gives us
N 2p(S) ≡N p(S) > 0 and thus N p(S) > 0.

Lemma 4.13.
If |S | = 4p − 3, then

1. −1 +N p(S)−N 2p(S) +N 3p(S) ≡ 0 (mod p)

2. N p−1(S)−N 2p−1(S) +N 3p−1(S) ≡ 0 (mod p)

3. 3− 2N p−1(S)− 2N p(S) +N 2p−1(S) +N 2p(S) ≡ 0 (mod p)

Proof. 1. Consider the sequence S of length 4p − 3 over G and
Consider the sequence φ(S) of length 4p − 3 over G⊕Cp and

Then the zero sums of even length =N 0(φ(S)) +N 2p(φ(S))
Then the zero sums of odd length =N p(φ(S)) +N 3p(φ(S))

Now from lemma 3.4 we have the claim.

2. Consider the sequence 0S of length 4p − 2 over G and
Consider the sequence φ(0S) of length 4p − 2 over G⊕Cp and

Then the zero sums of even length =N 0(φ(0S)) +N 2p(φ(0S)) = 1 +N 2p−1(S) +N 2p(S)
Then the zero sums of odd length = N p(φ(0S)) + N 3p(φ(0S)) = N p−1(S) + N p(S) +
N 3p−1(S) +N 3p(S)

Now from lemma 3.4 and item 1 we have the claim.

3. Let us fix some notation before we move ahead.

If S =
4p−3∏
i=1

gi and J = {1,2, . . . ,4p − 3}, for I ⊂ J we have SI =
∏
i∈I
gi .

Consider the congruence in lemma 4.9

1−N p−1(S)−N p(S) +N 2p−1(S) +N 2p(S) ≡ 0 (mod p)
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Now,

⇒
∑

I⊂J,|I |=3p−3

(1−N p−1(SI )−N p(SI ) +N 2p−1(SI ) +N 2p(SI )) ≡ 0 (mod p)

⇒
(
4p − 3
3p − 3

)
−
(
3p − 2
2p − 2

)
N p−1(S)−

(
3p − 3
2p − 3

)
N p(S) +

(
2p − 2
p − 2

)
N 2p−1(S) +

(
2p − 3
p − 3

)
N 2p(S) ≡ 0 (mod p)

⇒
(
4p − 3
p

)
−
(
3p − 2
p

)
N p(S)−

(
3p − 3
p

)
N p(S) +

(
2p − 2
p

)
N 2p−1(S) +

(
2p − 3
p

)
N 2p(S) ≡ 0 (mod p)

If a ∈N and b ∈ {1,2, . . .p} we have the following

(p − 1)!
(
ap − b
p

)
≡ 1
p

p−1∏
i=0

(ap − b − i) (mod p)

≡ (a− 1)
p−1∏

i=0,i,p−b
(ap − b − i) (mod p)

= (a− 1)(p − 1)!

∴
(ap−b
p

)
≡ (a− 1) (mod p)

So we have 3− 2N p−1(S)− 2N p(S) +N 2p−1(S) +N 2p(S) ≡ 0 (mod p)

Lemma 4.14.
If |S | = 4p − 3 and N p(S) ≡ 0 (mod p), then

N p−1(S) ≡N 3p−1(S) (mod p)

Proof. Let χ be the number of partitions of S = I1 ∪ I2 ∪ I3 satisfying

|I1| = p − 1, |I2| = p − 2, |I3| = 2p

and
σ (I1) = 0 = σ (I3),σ (I2) = σ (S)

Run through all permissible I1 and count permissible I2 in S/I1 to determine χ

χ ≡
∑
I1

N 2p(S/I1) ≡
∑
I1

−1 ≡ −N p−1(S) (mod p)

from lemma 4.11.

Counting I2 another way :

χ ≡
∑
I1∪I3

N 2p(S/I1) ≡
∑
I1∪I3

−1 ≡ −N 3p−1(S) (mod p)
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from lemma 4.11. And we are done.

Proof of Kemnitz conjecture. If p = 2 then |S | = 5 and thus we would find g2|S and we would
be done. Therefore assume p is odd.

Let us add up the three congruences in item 1,item 2,item 3 along with the assumption in
lemma 4.14 to get 2 −N p(S) +N 3p(S) ≡ 0 (mod p) OR N 3p(S) ≡ 2 (mod p) but lemma 4.12
tells us that N p(S) , 0 and we are done.

4.2.2 Structural insights that contain the proof due to Reiher

Lemma 4.15.
Let G =H ⊕Cn with exp(H)|n and D(H) ≤ n, then

s(G) ≥ 2(D(H)− 1) + 2(n− 1) + 1

Proof. If we can find a zero sum free sequence of length 2(D(H)− 1) + 2(n− 1), we are done.
Let T be a zero free sequence over H of length D(H)− 1.
Write G =H ⊕Cn =H⊕ < e > with ord(e) = n
Then consider the sequence S = T (T + e)en−10n−1, T = 2(D(H)−1) + 2(n−1). I claim that this
is n-subsequence zero free. Why?

• We cannot get a n-subsequence zero sum if we take en−1,0n−1,T by themselves.

• T ,T + e are zero free because D(H) ≤ n; T ,e is also zero free because of same reason;
T ,0;e,0;T + e,0 are zero free trivially; T + e,e is also zero free because we will always
end up taking a subsequence of T which is n-subsequence zero free.

• T ,T + e,e is zero free we will go beyond the requirement of finding a n-subsequence
zero sum

Hence, we are done.

Remark 4.16. 1. η(G) ≥ 2(D(H)− 1) +n
Let T be a zero free sequence over H of length D(H)− 1.
Consider the sequence S = T (T + e)en−1, |S | = 2(D(H)− 1) + (n− 1)
This does not have a zero sum of length less than exp(G) = n and so we are done.

2. One also has s(G) ≥ η(G) + exp(G)− 1

Conjecture 4.1 (Gao).
In the remark 2 above, equality always holds, that is s(G) = η(G) + exp(G)− 1

Now that we have lower bound we try to find an upper bound. A relatively general up-
per bound is presented by Schmid [SZ10]. He uses motivation from the structural insights
provided by Savchev-Chen [SC05].
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Lemma 4.17.
If G is a finite abelian p-group with exp(G) = n and D(G) ≤ 2n− 1, then

2D(G)− 1 ≤ η(G) +n− 1 ≤ s(G) ≤ D(G) + 2n− 2

In particular, if D(G) = 2n− 1 we have s(G) = η(G) +n− 1 = 4n− 3

Thus we have obtained Kemnitz conjecture as a special case of our lemma.
Now that we have s(Cn), s(C2

p ) we move to general rank 2 group and prove the following
result:

5 More results on Davenport constant and other constants

This section will contain the following:

1. D(G) where G =H ⊕Cpk is a p − group

2. D(G) for G � C2 ⊕C2 ⊕C2n

3. D(G) for G � C2 ⊕C3 ⊕C3d

4. Values of η(G), s(G) other than the ones obtained so far.

Till now we have calculated Davenport’s constant for cyclic groups Cn, p-groups, rank-2
groups. Now we move up a rank and try to find the constant for certain special type of
rank-3 groups.

5.1 Davenport’s constant (D(G))

So we have seen earlier that D(G) =D∗(G) for rank-2. The groups that have this property are
known as rank-2 like groups.

Proposition 5.1.
Let G =H ⊕Cpk be a p-group with D(H) = pk then

D(H ⊕Cnpk ) =D∗(H ⊕Cnpk ) =D∗(H) + (npk − 1) =D(H) +npk − 1 = pk(n− 1)− 1

where n ∈N

Proof. We can show that η(G) ≥ 3pk − 2 from item 1

Case (n = 1) It is trivially true.
Case (n ≥ 2) Note that npk + pk − 1 = (n− 2)pk + 3pk − 1
Let Q � Cn be a subgroup of G such that G/Q �H ⊕Cpk .
Consider sequence S over G of length D∗(G) and its projection φ(S) in G/Q. Then it has
atleast n zero sum subsequences in Q so we will get zero sum subsequence in the original
sequence S as well.
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5.1.1 Results for C2 ⊕C2 ⊕C2n

Lemma 5.2.
A sequence S over Cn of length n−1 is short zero sum free if and only if it is of the form
S = gn−1 for some g ∈ Cn and ord(g) = n.

Proof. ’⇐’ If S = gn−1 for some g ∈ G with ord(g) = n, then any subsequence of S will fail to
give a zero sum and thus there are no short zero sum sub-sequences of S.
’⇒’ Suppose S = g1g2 · · ·gn−1 is short zero sum free with g1 , g2
Consider Sk = g1 + g2 + · · ·+ gk where k = 1,2, . . . ,n− 1.
Let U = {Sk : k = 1,2, . . . ,n− 1}

1. 0 <U

2. |U | ≤ n− 1

3. |U | ≥ n− 1 becuase of the zero-free condition.

Combining 2,3 gives us |U | = n−1 but g2 ∈U which is a contradiction, therefore all elements
are equal.

Lemma 5.3.
For G = Cr2 the following is true :

η(G) = 2r , s(G) = 2r + 1

Proof. First consider η(Cr2). Consider a sequence over Cr2 of length 2r − 1 which has a zero
sum subsequence of length at most 2, the only possibilities are either it contains the 0-
element or one of the element has to repeat. Suppose the sequence does not have the 0-
element and no repeating elements, then take all the possible nonzero elements in the se-
quence (we have 2r − 1 of them). To get a zero sum subsequence of length 2 we will have to
repeat one of the nonzero element, and therefore η(G) = 2r

Similar reasoning but the additional restriction that the zero sum subsequence needs to have
a length 2 means that we have to repeat one element and therefore s(G) = 2r + 1

Note 5.4.
If n = even = 2m then we are in “rank 2- like groups”, C2 ⊕C2 ⊕C4m

Theorem 5.5 (Baayen, van Lint).
For odd n, we have D(C2 ⊕C2 ⊕C2n) =D∗(C2 ⊕C2 ⊕C2n) = 2n+ 2
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Proof. We will show that we can find a zero-sum sequence if a sequence of length 2n+ 2 is
taken.

LetK ≤ C2⊕C2⊕C2n such thatK � Cn. Let S be the sequence of length 2n+2 overC2⊕C2⊕C2n

Consider the quotient C2 ⊕ C2 ⊕ C2n/K � C3
2 and sequence T = S + K which means if S =

g1 · · ·g2n+2 then T = (g1 +K) · · · (g2n+2 +K)

Note that 2n+ 2 = 2(n− 3) + η(C3
2 ) using lemma 5.3

Thus we can extract n − 2 disjoint subsequences, call them S1,S2, · · · ,Sn−2 with |Si | ≤ 2 and
σ (Si) ∈ K for i = 1,2, . . . ,n− 2

The remaining sequence S ′ = S(S1S2 · · ·Sn−2)−1 has length atleast 6.

If it contains a zero element or an element repeated more than once then also we can find 2
zero sum subsequences.

If the length is atleast 7 with no zero element and no repeating element then we can find two
more subsequences whose sum lies in K because of the nature of elementary 2-group C3

2 , we
can always find 3 elements that have zero sum and the remaining elements are atleast 4 and
D(C3

2 ) = 4 and thus we can find another zero sum subsequence.

Assume that |S ′ | = 6 and all elements in projection of S ′ to C3
2 are distinct and nonzero.

Then we can again exploit the fact that it is an elementary 2 group and choose basis e1, e2, e3
(C2 ⊕C2 ⊕C2n/K �< e1 > ⊕ < e2 > ⊕ < e3 >) such that the 6 elements can be written as

e1, e2, e3, e1 + e2, e1 + e3, e2 + e3

The corresponding elements in S ′ are say g1, g2, g3, g12, g23, g13

Note that we cannot have disjoint zero sum sequences anymore but we can have multiple
zero sum sequences with the above basis.

Let U |S ′ be such that σ (U ) ∈ K .

Consider the sequence in K � Cn, σ (S1)σ (S2) · · ·σ (Sn−2)σ (U ), length is n−1. If this has a zero
sum subsequence we are done. Assume to the contrary that it is zero sum free and from our
lemma it is possible only when all the elements are equal due to lemma 5.2, i.e., there is a
g0 ∈ K such that σ (U ) = g0 for each U |S ′ with σ (U ) ∈ K .

Let us see what are the possible Us
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g1 g2 g12 U1
g1 g3 g13 U2

g2 g3 g23 U3
g12 g13 g23 U4

g1 g3 g12 g23 V1
g1 g2 g13 g23 V2

g2 g3 g12 g13 V3

We find that σ (Ui) = g0 ∈ K and σ (Vj) = g0 ∈ K and also |Ui | = 3, |Vj | = 4

We also find that 4g0 = U1U2U3U4 = V1V2V3 = 3g0 ⇒ g0 = 0 which is a contradiction and
thus the sequence has a zero sum subsequence in K and thus a zero sum subsequence exists
in the original sequence.

Theorem 5.6.
For m|n one has D(C2 ⊕C2m ⊕C2n) =D∗(C2 ⊕C2m ⊕C2n)

Proof. Classical result under some technical result on zero sum sequences over rank-2 groups.

Question 5.7.
What happens to Cr−1

2 ⊕C2n

Proposition 5.8.
D(C4

2 ⊕C2n) >D∗(C4
2 ⊕C2n) = 2n+ 4 for odd n

Proof. I will produce a zero-sum free sequence of length 2n+ 4

Let C4
2 ⊕C2n �< e1 > ⊕ < e2 > ⊕ < e3 > ⊕ < e4 > ⊕ < g > where ord(ei) = 2 and ord(g) = 2n

IDEA: Take a K � Cn a subgroup and consider the quotient. Then extract sequences whose
sum lies in K . We wish to construct a sequence which just falls short of being zero in Cn. So
we control the gs. We want to have one spot empty in the cyclic group (for our control), we
want atmost n− 2 sequences in the cyclic group so we can have atmost 2(n− 2) + 1 times g.
Take the sequence to be g2n−3. We want to find 7 more elements so that we can have zero-
sum free sequence of desired length. Now we construct the remaining 7 elements.

First focus just on C4
2 . We wish to construct 7 elements that contains zero sum subsequences.
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e1 S1
e2 S2

e3 S3
e4 S4

e1 e2 e3 S5
e1 e2 e4 S6

e2 e3 e4 S7

Note that each zero-sum subsequence has length 4. Now we want to add gs to the sequences
such that 4 × (xg) ≡ 2g (mod 2n), so x = (n + 1)/2 works. Therefore our seven elements are
as follows:

e1
n+1

2 g S1
e2

n+1
2 g S2

e3
n+1

2 g S3
e4

n+1
2 g S4

e1 e2 e3
n+1

2 g S5
e1 e2 e4

n+1
2 g S6

e2 e3 e4
n+1

2 g S7

Thus we have constructed a sequence S = g2n−3S1S2 · · ·S7of length 2n+ 4 which is zero free,
and we are done.

5.1.2 Results for C3 ⊕C3 ⊕C3d

[Gau]

Question 5.9 (Open problems).
These observations tempt us to ask the following questions:

1. Does D(Crn) =D∗(Crn) always hold?

2. Does D(G) =D∗(G) always hold?

Further results in rank-3 can be found in [Zak19a]

5.2 η(G) and s(G)

5.2.1 Certain results on η(G) and s(G)

Theorem 5.10.
If G = Cn1

⊕Cn2
is a finite abelian group with n1|n2 then

s(G) = 2n1 + 2n2 − 3,η(G) = 2n1 +n2 − 2,D(G) = n1 +n2 − 2
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Lemma 5.11.
We have D(G) ≤ η(G) ≤ s(G)− exp(G) + 1

Proof. Consider a sequence S of length |S | ≥ s(G)− exp(G) + 1, let n = exp(G). Now consider
the sequence T = 0n−1S of length |T | ≥ s(G) then there is a subsequence T ′ | T such that
σ (T ′) = 0. T ′ = 0kS ′ where 0 ≤ k ≤ n − 1 and S ′ | S. Also note that |T ′ | = |S ′ | + k = n and
therefore S ′ is the required short zero sum subsequence of S. The other inequality holds by
definition.

Lemma 5.12.
Let G � Cn1

⊕ · · · ⊕Cnr with 1 < n1 | n2 | · · · | nr . If r ≥ 2 then η(G) ≥ D∗(G)− 1 +n1

Proof. Let G �< e1 > ⊕· · ·⊕ < er > with ord(ei) = ni Look at

e =
r∑
i=1

ei , S = en1−1
r∏
i=1

eni−1
i

Enough to prove that S does not have any short zero-sum subsequence. Let

T = en
r∏
i=1

e
n′i
i

with 0 ≤ n ≤ n1 −1 and 0 ≤ n′i ≤ ni −1 for all i = 1,2, . . . , r be a short zero sum subsequence of
S. It is clear that n ≥ 1 and thus we have 0 = σ (T ) = (n′1 +n)e1 + · · ·+ (n′r +n)er which implies
that n′i +n ≡ 0 (mod ni) for all i = 1,2, . . . r. We also note that 1 ≤ n′i +n ≤ 2ni −2⇒ n′i = ni −n
for all i = 1,2, . . . , r. Thus we have |T | = n+

∑r
i=1(ni −n) > nr = exp(G) and we are done.

Lemma 5.13.
Let H ⊂ G be a subgroup, k ∈ N and φ : G → G/H be a group epimorphism. If S is a
sequence over G and |S | ≥ (k − 1)exp(G/H) + s(G/H), then S admits a product decom-
position S = S1 · · · · · SkS ′ where for every i ∈ {1,2, . . . , k} φ(Si) has a sum zero and length
|Si | = exp(G/H)

Proof. Proof by induction. Suppose it is true for some j ∈ {1,2, . . . , k−1} that is S = S1S2 · · ·SjS ′
whereφ(Si) has zero sum for all i = 1,2, . . . , j and |Si | = exp(G/H). Then |S ′ | = |S |−j exp(G/H) ≥
s(G/H) and thus S ′ also has a subsequence Sj+1 such that φ(Sj+1) has a zero sum and |Sj+1| =
exp(G/H) and we are done.

Lemma 5.14.
LetH ⊂ G be a subgroup. If S is a sequence overG and |S | ≥ (s(H)−1)exp(G/H)+s(G/H),
then S has a zero-sum subsequence T of length |T | = exp(H)exp(G/H). In particular, if
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exp(G) = exp(H)exp(G/H) then

s(G) ≤ (s(H)− 1)exp(G/H) + s(G/H)

Proof. Let S be a sequence overG of length |S | ≥ (s(H)−1)exp(G/H)+s(G/H). By lemma 5.13
we have the decomposition S = S1S2 · · ·Ss(H)S

′ where for every i = 1,2, . . . , s(H), φ(Si) has a
zero sum and length |Si | = exp(G/H). Now, consider the sequence σ (S1)σ (S2) · · ·σ (Ss(H)) over
H , this has a zero sum subsequence of length exp(H) and thus we are done.

Proof of theorem 5.10. exp(G) = n2. From lemma 5.12 and lemma 5.11 we have

η(G) ≥ n1 − 1 +n2 − 1 + 1− 1 +n1 = 2n1 +n2 − 2

s(G) ≥ η(G) +n2 − 1 ≥ 2n1 + 2n2 − 3

It suffices to prove that s(G) ≤ 2n1 + 2n2 − 3.

We induct on exp(G). Let p be a prime such that p|n1 ⇒ n1 = pm1 and p|n2 ⇒ n2 = pm2.By
the induction hypothesis the proposition is true for groups of the form Q = Cm1

⊕Cm2
and

moreover G/Q � C2
p .By lemma 5.14 and proposition 4.7 we have

s(G) ≤ (s(Q)− 1)exp(G/Q) + s(G/Q) = (2m1 + 2m2 − 4)p+ 4p − 3 = 2n1 + 2n2 − 3

And we are done.

We have therefore found the values of D(G), s(G),η(G) for all finite abelian groups G of rank
2.

We have already obtained s(G) and η(G) for G = Cr2 and

Now we will find values for G = Cr
2k

in the usual way, finding the lower bound and then the
upper bound.

Lower bound n ≥ 2, r ≥ 1

Lemma 5.15.

η(Crn) ≥ (2r − 1)(n− 1) + 1
s(Crn) ≥ 2r(n− 1) + 1

Proof.

Upper bound n,r, c ∈N

Lemma 5.16.
If

η(Crm) ≤ c(m− 1) + 1 and
η(Crn) ≤ c(n− 1) + 1
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Then η(Crmn) ≤ c(nm− 1) + 1. Same result holds for s(Crnm).

Proof.

Question 5.17.
What about Cr3 ?

In Cr3 if we have x+ y + z = 0⇔ x+ z = −y⇔ x+ z = 2y⇔ x− y = y − z. This means that x,y,z
are a three term AP or are all equal.
Geometric Interpretation. Consider the elements of an AP to be {x,x+d,x+2d} = {x+td | t ∈
Z/Z3}. Thus C3

3 is the vector space over Z/Z3. And three terms are in AP⇔ they form an
affine line.

For the constant s(G), we have the following two results

5.2.2 EGZ constant for groups of the form Cr2 ⊕Cn
Can be found in [FZ16], [She17]

6 Future reading prospects

• Inverse zero sum problems [Gir10] [GS20] [Pen+20] [Gao+08]

• Set based constants [BS10] [Ord+11] [GRT04] [Ord+09]

• Zero sums in semigroups [Wan20]

• Weighted zero sum constants [ZY11], [AC08] [ARS20]

• Zero sum problems in affine caps [Ede+06] [Ede08]

• Zero sum in abelian non-cyclic groups [Car95]

• More results on Davenport and EGZ constant [Chi+12] [Adh+06] [Alk08] [GHZ16]
[Mor] [GG99]

• Zero sum subsequences of specified length [LW12] [Gao+14]

• Variant constants [Zak19b] [Tha07] [Per21]

• monoids, product one sequences, multiplicative ideal theory [CDG16] [GG13]
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86. isbn: 978-3-7643-8962-8. doi: 10.1007/978-3-7643-8962-8_7. url: https:
//doi.org/10.1007/978-3-7643-8962-8_7.

[LW12] Jiyou Li and Daqing Wan. “Counting subset sums of finite abelian groups”. en.
In: Journal of Combinatorial Theory, Series A 119.1 (Jan. 2012), pp. 170–182. issn:
00973165. doi: 10.1016/j.jcta.2011.07.003. url: https://linkinghub.
elsevier.com/retrieve/pii/S0097316511001154.

[09d] “Location and sumsets. 3.2 The Cauchy-Davenport inequality”. In: Combinato-
rial Number Theory and Additive Group Theory. Basel: Birkhäuser Basel, 2009,
pp. 141–165. isbn: 978-3-7643-8962-8. doi: 10.1007/978-3-7643-8962-8_12.
url: https://doi.org/10.1007/978-3-7643-8962-8_12.

[Mor] Bhavin K. Moriya. “Zero Sum Problems in Combinatorial Number Theory”.
Doctor of Philosophy. Harish-Chandra Research Institute, Allahabad, Uttar Pradesh,
India.

[NV12] Hoi H. Nguyen and Van H. Vu. “A characterization of incomplete sequences in
vector spaces”. en. In: Journal of Combinatorial Theory, Series A 119.1 (Jan. 2012),
pp. 33–41. issn: 00973165. doi: 10.1016/j.jcta.2011.06.012. url: https:
//linkinghub.elsevier.com/retrieve/pii/S0097316511001129.

[Ols69a] John E. Olson. “A combinatorial problem on finite Abelian groups, I”. en. In:
Journal of Number Theory 1.1 (Jan. 1969), pp. 8–10. issn: 0022314X. doi: 10.
1016/0022-314X(69)90021-3. url: https://linkinghub.elsevier.com/
retrieve/pii/0022314X69900213.

[Ols69b] John E. Olson. “A combinatorial problem on finite Abelian groups, II”. en. In:
Journal of Number Theory 1.2 (Apr. 1969), pp. 195–199. issn: 0022314X. doi:
10.1016/0022-314X(69)90037-7. url: https://linkinghub.elsevier.com/
retrieve/pii/0022314X69900377.

[Ord+09] Oscar Ordaz et al. “k-barycentric Olson constant”. In: Mathematical Reports (Bucureşti)
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